

Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office's Unified Model

Anthony C. Jones¹, Adrian Hill¹, Samuel Remy², N. Luke Abraham^{3,4}, Mohit Dalvi¹, Catherine Hardacre¹, Alan J. Hewitt¹, Ben Johnson¹, Jane P. Mulcahy¹, and Steven T. Turnock¹

- ¹ Met Office, Fitzroy Road, Exeter, EX1 3PB, UK
 - ² HYGEOS, Lille, France
 - ³ National Centre for Atmospheric Science, U.K.
 - ⁴Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.

Correspondence to: Anthony C. Jones (anthony.jones@metoffice.gov.uk)

10 Abstract.

Ammonium nitrate is a major aerosol constituent over many land regions and contributes to air pollution episodes, ecosystem destruction, regional haze, and aerosol-induced climate forcing. Many climate models that represent ammonium nitrate assume that the ammonium-sulphate-nitrate chemistry reaches thermodynamic equilibrium instantaneously without considering kinetic limitations on condensation rates. The Met Office's Unified Model (UM) is employed to investigate the sensitivity of ammonium nitrate concentrations to the nitric acid uptake coefficient (γ) in a newly-developed nitrate scheme in which first order condensation theory is utilised to limit the rate at which thermodynamic equilibrium is attained. Two values of γ representing fast ($\gamma = 0.193$) and slow ($\gamma = 0.001$) uptake rates are tested in 20-year global UM integrations. The global burden of nitrate associated with ammonium in the 'fast' simulation (0.11 Tg[N]) is twice as great as in the 'slow' simulation (0.05 Tg[N]), while the top-of-the-atmosphere radiative impact of representing nitrate is -0.19 Wm⁻² in the 'fast' simulation and -0.07 Wm⁻² in the 'slow' simulation. In general, the 'fast' simulation exhibits better spatial correlation with observed nitrate concentrations while the 'slow' simulation better resolves the magnitude of concentrations. Local near-surface nitrate concentrations are found to be highly correlated with seasonal ammonia emissions suggesting that ammonia is the predominant limiting factor controlling nitrate prevalence. This study highlights the high sensitivity of ammonium nitrate concentrations to nitric acid uptake rates and provides a mechanism for reducing nitrate concentration biases in climate model simulations. The new UM nitrate scheme represents a step-change in aerosol modelling capability in the UK across weather and climate timescales.

1 Introduction

Air pollution poses a significant hazard to human-health and to the environment world-wide. In 2016, 90 % of the global population were exposed to pollutant concentrations in excess of World Health Organisation (WHO) defined safe levels, resulting in ~7 million premature deaths (WHO, 2020). Specific human-health conditions arising from air pollution exposure

35

40

60

include lung cancer and cardiopulmonary disease, and deleterious impacts also extend to ecosystems (e.g. eutrophication, loss of biodiversity, acid deposition), building and infrastructure erosion, and impaired atmospheric visibility and regional haze (Kucera and Fitz, 1995; Monks et al., 2009; Lovett et al., 2009; Xu et al., 2019). Solid or liquid particulate matter (PM) is a significant component of air pollution and particles with diameters less than 2.5 µm (i.e. PM_{2.5}) are particularly harmful to human health. Lelieveld et al. (2015) estimate PM_{2.5} related global mortality to be 3.3 million deaths yr⁻¹ in 2010, far greater than the second deadliest air pollutant, ozone (O₃, 142 thousand deaths yr⁻¹). Sources of air pollution differ with region; in North Africa and the Middle East, the predominant source is naturally emitted dust; in Europe, agricultural activity; and in South East Asia, residential energy production (Lelieveld et al., 2015).

Secondary inorganic ammonium (NH₄), sulphate (SO₄), and nitrate (NO₃) aerosol form a major part of PM_{2.5} composition in the Northern Hemisphere (Jiminez et al., 2009). Ammonium is predominantly emitted as ammonia (NH₃) gas by agricultural sources such as mineral fertilizer application and volatilization of livestock manure; biomass burning and from ocean emission (Bauer et al., 2016). NH₃ emissions from agriculture have dramatically increased since the discovery of the Haber-Bosch process for extracting reactive nitrogen from its stable atmospheric form (N_2) in the early 20^{th} Century. The corresponding NH₃-based fertilizer revolution led to significantly enhanced global food production and a population explosion from 2 billion to 7 billion people (Smith et al., 2020). However, reactive nitrogen deposition from fertiliser usage is now 20-fold higher than it was before the industrial revolution (Xu et al., 2019). NO₃ is formed from atmospheric nitric acid (HNO₃), itself an oxidation product of nitrogen oxides (NO_x = NO + NO₂). NO_x is primarily emitted from anthropogenic fossil fuel burning (21-28 Tg N yr⁻¹) but has natural sources including soil emissions, biomass burning and lightning (12-35 Tg N yr⁻¹) (Seinfeld and Pandis, 1998; Vinken et al., 2014). NO_x exacerbates air pollution via two pathways - by NO₃ aerosol production and by net O₃ production in the presence of sunlight and volatile organic compounds (VOCs) (Crutzen, 1970). SO₄ is the oxidation product of sulphur dioxide (SO₂), which is primarily emitted by anthropogenic processes such as fossil fuel combustion, petroleum refining, and metal smelting (Zhong et al., 2020). Natural SO₂ sources include volcanic degassing and the oxidation of reduced natural sulphurous compounds such as dimethyl sulphide (DMS) (Carn et al., 2017). Global anthropogenic SO₂ emissions have steadily declined from a peak of ~70 Tg S yr⁻¹ in the 1980s to ~52 Tg S yr⁻¹ in 2014 owing to clean air regulation instigated to mitigate adverse SO₂ impacts such as acid rain (Mcduffie et al., 2020; Zhong et al., 2020). Global NO_x emissions peaked in 2010 at ~40 Tg N yr⁻¹, with emissions growth from 1990-

In the troposphere, NO_x is involved in a complex diurnal photochemical cycle involving VOCs and O₃. The dominant NO_x removal mechanism during daytime is via oxidation by hydroxyl (OH) radicals to form HNO₃ (Seinfeld and Pandis, 1998). At night-time, NO2 is unable to photolyze and the dominant NOx removal mechanism is via reaction with O3 to produce the NO3 radical; which further reacts with NO₂ to form dinitrogen pentoxide (N₂O₅); which heterogeneously reacts with water (H₂O)

2010 driven by rapid industrialisation in Asia and intensified international shipping, but have decreased by 7 % over the

2010s owing primarily to traffic emission control measures in China (Mcduffie et al., 2020).

75

to produce HNO₃ (Atkinson, 2000). HNO₃ is abundantly soluble and rapidly dissolves in water droplets or is neutralised by NH₃ to form aerosol. SO₂ is oxidised in the aqueous phase by dissolved oxidants such as O₃ and hydrogen peroxide (H₂O₂), and in the gas phase by OH, to form non-volatile H₂SO₄ (Seinfeld and Pandis, 1998). H₂SO₄ and HNO₃ react with NH₃ to produce ammonium sulphate ((NH₄)₂·SO₄) and semi-volatile ammonium nitrate (NH₄·NO₃) aerosol respectively, with H₂SO₄ neutralisation taking precedence owing to the lower vapor pressure of H₂SO₄ over HNO₃ (Hauglustaine *et al.*, 2014). In a slower process, HNO₃ also condenses irreversibly onto existing dust and sea-salt aerosols, forming calcium nitrate (Ca·(NO₃)₂) and sodium nitrate (Na·NO₃) salts respectively (Li and Shao, 2009). Owing to the prevalence of anthropogenic NO_x and NH₃ sources, particulate NO₃ is a major component of urban air pollution. For example, in Europe NO₃ constitutes 17 % of urban PM_{2.5} aerosol by mass (Putaud *et al.*, 2004), while NH₄·NO₃ can comprise 75 % of PM_{2.5} in air pollution events in Salt Lake City (Womack *et al.*, 2019).

Nitrate aerosol has an enigmatic history within the climate modelling community owing to the complexity of modelling HNO₃ neutralisation by NH₃ and the semi-volatility of NH₄·NO₃ aerosol. In the inorganic aerosol system, gaseous and particulate equilibria are reached at different rates due to evolving temperature and acidity constraints, and the variability in gaseous uptake with particle size (Myhre et al., 2006; Benduhn et al., 2016). Although complex dynamical and 'hybrid dynamical' schemes that fully or partially resolve the chemistry of inorganic aerosol exist (e.g. Jacobson, 1997; Feng and Penner, 2007; Zaveri et al., 2007; Benduhn et al., 2016; Xu and Penner, 2012), they remain computationally expensive – owing to the numerical stiffness of the inorganic system – when compared to schemes that assume thermodynamic equilibrium is reached instantaneously (Nenes et al., 1998). Most of the current crop of nitrate-resolving global climate models (GCMs) and some regional climate models (RCMs) assume the instantaneous thermodynamic equilibrium approximation (Liao et al., 2003; Myhre et al., 2006; Bauer et al., 2007; Bellouin et al., 2011; Hauglustaine et al., 2014; Paulot et al., 2016; Bian et al., 2017; Remy et al., 2019). Dynamical models have the advantage of capturing natural phenomena where the inorganic aqueous system is outside of (or slow to reach) equilibrium, for instance in low gas concentrations, low temperatures, high Relative Humidities (RH), and for condensation onto coarse particles (Wexler and Seinfeld, 1990; Benduhn et al., 2016). Thermodynamic equilibrium models typically overestimate the fraction of NO₃ in the coarse mode, for example, in one study NO₃ associated with fine mode NH₄·NO₃ was underestimated by 25 % compared to a hybrid-dynamical model (Feng and Penner, 2007). However, the additional computational expense of using dynamical approaches has motivated the climate modelling community to seek pragmatic solutions to represent NH₄ and NO₃ aerosol in GCMs and RCMs.

GCM simulations suggest that the present-day direct radiative forcing from NO₃ (global mean \approx -0.1 Wm⁻²) amounts to a quarter of the SO₄ forcing on a global-mean basis (Myhre *et al.*, 2006; Bauer *et al.*, 2007; Bellouin *et al.*, 2011; Hauglustaine *et al.*, 2014). NO₃ aerosol burdens are widely projected to increase over the 21st century as a result of stricter SO₂ emissions regulations, which would reduce the SO₄ available for neutralisation and concomitantly liberate NH₄ for NH₄·NO₃ formation (Bauer *et al.*, 2007; Bellouin *et al.*, 2011). Consequently, NO₃ may become the dominant aerosol species in terms of radiative

100

105

110

115

120

125

130

and urban air pollution impact by the end of the century, depending on future emissions of SO₂, NH₃ and NO_x (Hauglustaine *et al.*, 2014). Such NO₃ concentration enhancements may be effectively mitigated on a regional basis by judicious regulation targeting anthropogenic NH₃ and/or NO_x emissions (Bauer *et al.*, 2016). However, climate models disagree as to whether near-surface NO₃ concentrations will increase or decrease in future climate, and on the correct partitioning between NO₃ in the fine mode (associated with NH₄) and coarse mode (associated with dust and sea-salt) (Bian *et al.*, 2017). Many of the uncertainties in NH₄ and NO₃ projections emanate from different treatments of the HNO₃ and NH₃ gases in models, with Bian *et al.* (2017) highlighting wet deposition as a particularly sensitive process. Additionally, the vertical distributions of HNO₃ and NH₃ are poorly constrained by observations which adds to uncertainty in NH₄ and NO₃ projections (Paulot *et al.*, 2016).

The emerging conclusion from observations and from the burgeoning literature on nitrate modelling is that ammonium nitrate poses an increasingly significant health hazard through urban air pollution (e.g. DEFRA, 2012) and via deposition to nitrogensaturated ecosystems (Li et al., 2016); and potentially could become a major climate forcing agent as SO₄ concentrations wane (Hauglustaine et al., 2014). The impetus for explicitly representing NH₄ and NO₃ in GCMs is clear, even by using simple thermodynamic equilibrium approaches which bypass temporal nuances in the gas-particulate partitioning. The Met Office Unified Model (UM) has previously incorporated a thermodynamic-equilibrium ammonium nitrate scheme in the CMIP5generation climate model Hadley Centre Global Environment Model version 2 (HadGEM2-ES) (Bellouin et al., 2011). This nitrate scheme - developed within the single-moment Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC) aerosol framework (Bellouin et al., 2007) – continues to be utilised for online air quality forecasts across the UK in the operational Air Quality Unified Model (AQUM) (Savage et al., 2013). However, the CMIP6-generation state-of-the-art United Kingdom Earth System Model version 1 (UKESM1) which incorporates the Global Atmosphere model vn7.1 (GA7.1) (Walters et al., 2019) replaced the single-moment CLASSIC aerosol scheme with the double-moment Global Model of Aerosol Processes modal (GLOMAP-mode) scheme which currently omits ammonium nitrate (Mann et al., 2010; Mulcahy et al., 2020). Mulcahy et al. (2020) attributed a negative bias in aerosol optical depth and mass burden over northern hemisphere continents in UKESM1 to the missing NH₄ and NO₃. The hybrid-dynamical nitrate scheme developed by Benduhn et al. (2016) in the standalone GLOMAP-mode model is yet to successfully transition to the UM. This has provided the Met Office with fresh impetus to develop a simplified thermodynamic equilibrium nitrate scheme within the GLOMAP-mode framework for interim use in the UM and possible implementation in future generations of UKESM, in order to fill the NH₄ and NO₃ shaped void. The nitrate scheme may garner further utility if AQUM or its successor transitions to utilising the GLOMAP-mode aerosol scheme rather than CLASSIC (Hemmings and Savage, 2018).

In this paper we describe the development and testing of a simple thermodynamic equilibrium nitrate scheme in the UM and explore the sensitivity of the scheme to a key parameter that is poorly constrained by observations – the HNO₃ uptake coefficient on aerosol surfaces (γ). Specifically, most models assume that NH₄·NO₃ concentrations reach thermodynamic equilibrium instantaneously without considering kinetic limitations on the condensation of HNO₃ or NH₃ onto existing aerosol

135

140

160

particles, as is considered here. The UM nitrate scheme reported here comprises fine NH₄ and NO₃ aerosol in the Aitken, accumulation, and coarse soluble modes and coarse NO₃ representing NO₃ aerosol associated with dust and sea-salt in the accumulation and coarse soluble modes. The scheme was originally developed by Hauglustaine *et al.* (2014) for use in the LMDZ-INCA climate model, then adapted for ECMWF's version of GLOMAP-mode by Remy *et al.* (2019), following which it was kindly provided to the Met Office for adaptation to the UM. In Section 2.1, we describe the configuration of the UM used to test the new nitrate scheme. In Section 2.2, we describe the thermodynamic equilibrium nitrate model in detail. In Section 2.3 we describe the simulations performed in this study. In Section 3, we evaluate the model using surface and satellite observations and investigate the sensitivity of the model to perturbations to a key parameter – the HNO₃ uptake coefficient (γ) – in a manner analogous to Bauer *et al.* (2004). In Section 4, we discuss the utility of the nitrate scheme and provide a roadmap for future development and integration within UKESM.

2 Methods

2.1 The Met Office Unified Model (UM)

The nitrate scheme was originally developed using the UM with the science configurations Global Atmosphere vn7.1 (GA7.1) and Global Land vn7.0 (GL7.0) (Walters *et al*, 2019). Although the UM can be run at various resolutions, the resolution used here is the climate configuration N96L85, i.e. 1.875° longitude by 1.25° latitude with 85 vertical levels up to a model lid at 80 km, with 50 levels below 18 km altitude, and a model timestep of 20 mins (Walters *et al*, 2019). The UM's dynamical core, Even Newer Dynamics for General atmospheric modelling of the environment (ENDGame), is a semi-implicit and semi-lagrangian solver for the non-hydrostratic deep-atmosphere equations of motion (Wood *et al.*, 2014). Mass conservation of moist tracers is achieved using the Optimised Conservative Filter scheme (Zerroukat and Allen, 2015). Atmospheric radiative transfer is modelled assuming the two-stream approximation, with 6 wavebands in the shortwave spectrum and 9 wavebands in the longwave spectrum (Manners *et al.*, 2015). Large-scale cloud is modelled with the Prognostic Cloud fraction and Prognostic Condensate (PC2) scheme (Wilson *et al.*, 2008) and cloud microphysics uses the single-moment scheme based on Wilson and Ballard (1999) with extensive modifications. Full details of GA7.1/GL7.0 are provided in Walters *et al.* (2019) and Mulcahy *et al.* (2018).

In the model configuration used here, GA7.1 includes the United Kingdom Aerosol and Chemistry (UKCA) model which simulates atmospheric composition in the Earth System, with UKCA chemistry called once per model hour in N96L85, although emissions are evaluated every model timestep (Archibald *et al.*, 2020). UKCA is coupled to the GLOMAP-mode aerosol scheme, permitting a holistic and prognostic treatment of aerosol and chemical processes over the entire atmosphere (Mann *et al.*, 2010; Mulcahy *et al.*, 2020). The coupled UKCA and GLOMAP-mode model is widely referred to as UKCA-mode. The Met Office's Hadley Centre Global Climate version 3.1 (HadGEM3-GC3.1) model – the physical basis of UKESM1 – uses a simplified UKCA chemistry configuration with important offline oxidants (O₃, OH, NO₃, HO₂) provided as monthly

190

195

mean climatologies (Walters et al., 2019; Mulcahy et al., 2020). This is of insufficient complexity for ammonium nitrate 165 aerosol, given the importance of missing gases (i.e. HNO₃, NH₃ and precursors) and chemical reactions. Instead the combined Stratospheric-Tropospheric version 1.0 (StratTrop 1.0) chemistry scheme, which is included in UKESM1 (Sellar et al., 2019) and described in detail by Archibald et al. (2020), is utilised here. Although not mentioned in Archibald et al. (2020), gaseous ammonia (NH₃) is a passive tracer in StratTrop1.0, while gaseous nitric acid (HNO₃) is the product of various atmospheric 170 chemical reactions (see Table S1 in the Supplement). StratTrop1.0 simulates the chemical cycles of Ox, HOx, NOx, and halogenic compounds; the oxidation of various organic compounds; and heterogenous chemistry on Polar Stratospheric Cloud (PSCs), Nitric Acid Trihydrate (NAT) and tropospheric aerosols, with 84 species and 291 chemical reactions. Further details of the nitrogen chemistry in StratTrop1.0 is provided in Section 2.2. Interactive photolysis in UKCA is modelled with the Fast-JX scheme, which covers the wavelength range 177-750 nm (Telford et al., 2013). Gaseous wet deposition follows the effective 175 Henry's law approximation described in Giannakopous et al. (1999) while dry deposition is treated with a resistance type model (O'Connor et al., 2014). Gaseous dissolution in cloud droplets is modelled using the effective Henry's law framework, with UKCA uniformly assuming a fixed cloud water pH of 5.0. Values required to calculate the effective Henry's law coefficients are specified as $K_H(298K) = 2.1 \times 10^5$, 1.23, and 1×10^6 for HNO₃, SO₂ and NH₃ respectively, and $-\Delta H/R = 8700$, 3020, and 0 K⁻¹ for HNO₃, SO₂ and NH₃ respectively (Archibald et al., 2020). The values for NH₃ are comparable to AeroCom 180 phase III values given in Table 5 in Bian et al. (2017).

GLOMAP-mode is a prognostic double-moment aerosol scheme that carries aerosol mass and number concentrations in 4 soluble lognormal modes spanning sub-micron to super-micron sizes (nucleation, Aitken, accumulation, and coarse), as well an insoluble Aitken mode (see Table 1) (Mann et al., 2010; Mulcahy et al., 2020). The variable size distribution allows the median dry radius to evolve within prescribed size brackets, while the lognormal standard deviation or 'mode width' is held fixed. GA7.1's default GLOMAP-mode configuration includes the aerosols sulphate (SO₄), black carbon (BC), organic matter (OM), and sea-salt (SS), with species in each mode treated as an internal mixture. Mineral dust is represented in GA7.1 by the CLASSIC 6 bin scheme described by Woodward et al. (2001). Aerosol processes in GLOMAP-mode include binary homogeneous SO₄ nucleation, mode-merging, cloud processing, condensational uptake of H₂SO₄ gas and secondary organic vapour from UKCA, and coagulation within and between modes. Aerosol water content is simulated prognostically using the Zdanovskii-Stokes-Robinson (ZSR) method, allowing for a more accurate representation of aerosol-cloud interactions and aerosol radiative impact than in CLASSIC. The direct aerosol radiative effect is modelled using UKCA-Radaer, which utilises pre-determined look-up tables of Mie extinction parameters based on aerosol size and composition (Bellouin et al., 2013). Cloud condensation nuclei are converted to cloud droplets using UKCA-Activate which is based on the Abdul-Razzak and Ghan (2000) parameterization, while autoconversion of cloud droplets to rainwater follows Khairoutdinov and Kogan (2000) (Boutle at al., 2014; West et al., 2014; Mulcahy et al., 2018). Aerosol removal processes treated by UKCA-mode include dry deposition and sedimentation, in-cloud scavenging by the autoconversion of cloud to rainwater; beneath cloud scavenging by rain and snow impaction; and convective plume scavenging (Mann et al., 2010, Mulcahy et al., 2020).

Aerosol Mode	Geometric mean diameter \overline{D} (nm)	σ_g	Species		
Nucleation soluble	1 – 10	1.59	SO ₄ , OM		
Aitken soluble	10 – 100	1.59	SO ₄ , BC, OM, NH ₄ , NO ₃		
Accumulation soluble	100 – 1000	1.4	SO ₄ , BC, OM, SS, NH ₄ , NO ₃ , hetNO ₃		
Coarse soluble	> 1000	2.0	SO ₄ , BC, OM, SS, NH ₄ , NO ₃ , hetNO ₃		
Aitken insoluble	10 - 100	1.59	BC, OM		

Table 1: Properties of the aerosol size distribution in the nitrate UKCA-mode setup including the size range of the modes, the geometric standard deviation, and the permitted aerosol species in each mode. Species include sulphate (SO_4) , black carbon (BC), organic matter (OM), sea-salt (SS) and the newly added ammonium (NH_4) , nitrate (NO_3) and coarse nitrate $(het NO_3)$. Adapted from Table 1 in Mulcahy *et al.* (2020).

2.2 Nitrate model

200

205

210

In addition to the standard aerosols in GA7.1 - SO₄, BC, OM, and SS - ammonium (NH₄), nitrate (NO₃) and coarse nitrate (herein denoted hetNO₃ for convenience) are added to a new UKCA-mode setup which comprises 28 aerosol tracers in total (Table 1). NH₄ and NO₃ mass is emitted into the Aitken and accumulation soluble modes and may be transferred to the coarse soluble mode via aerosol processing, while hetNO₃ is limited to the accumulation and coarse soluble modes. Nitrate chemistry is evaluated once per model timestep within the UKCA emissions-control routine. The nitrate model closely follows Hauglustaine *et al.* (2014) and Remy *et al.* (2019) with subtle yet important differences. An exhaustive step-by-step methodology is provided in the Supplement (Sections S1 and S2) and outlined below.

2.2.1 Ammonium nitrate production

Fine mode ammonium nitrate production is evaluated before the condensation of HNO₃ onto coarse aerosols (e.g. sea-salt and dust) because smaller particles generally reach thermodynamic equilibrium faster (Hauglustaine *et al.*, 2014; Benduhn *et al.*, 2016). Firstly, the sulphate neutralisation state (Γ_{SO_4}) is determined from the total moles of ammonia ($T_A = \{NH_3\} + \{NH_4^+\}$) and total moles of sulphate ($T_S = \{SO_4\}$) using Eq. 1 (Metzger *et al.*, 2002).

$$\Gamma_{SO_4} = \begin{cases}
2 & 2 T_S < T_A & 2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4 \\
1.5 & T_S < T_A < 2 T_S & 3NH_3 + 2H_2SO_4 \rightarrow (NH_4)_3H(SO_4)_2 \\
1 & T_A < T_S & NH_3 + H_2SO_4 \rightarrow (NH_4)HSO_4
\end{cases}$$
[1]

225

230

235

The moles of ammonia available for neutralisation of HNO₃ following the irreversible production of ammonium sulphate is then $T_A^* = T_A - \Gamma_{SO_4}T_S$. If all free ammonia is consumed by the neutralisation of SO₄ ($T_A^* = 0$) then no new nitrate is formed. However, if ammonia is available ($T_A^* > 0$) then the equilibrium constant (K_p) of the ammonia-nitrate system (Eq. 2) is determined using the parameterisation of Mozurkewich (1993) (see Section S1 in the Supplement). In this formulation, K_p is solely a function of temperature and Deliquescence Relative Humidity (DRH), with DRH following the parameterisation of Seinfeld and Pandis (1998).

$$HNO_3 + NH_3 \stackrel{K_p}{\leftrightarrow} NH_4NO_3$$
 [2]

The equilibrium concentration of ammonium nitrate is then calculated using the formulation from Seinfeld and Pandis (1998). Letting T_N denote the total molar concentration of nitrate ($T_N = \{HNO_3\} + \{NO_3^-\}$), if $T_A^*T_N > K_p$ then the molar concentration of ammonium nitrate aerosol at equilibrium is calculated using Eq. 3. Else if free ammonia or nitrate concentrations are limited such that $T_A^*T_N \le K_p$ or $T_A^* = 0$ then all existing ammonium nitrate aerosol evaporates and the corresponding mass is transferred to the gas phase HNO_3 and NH_3 .

$$\{NH_4NO_3\}_{eq} = \frac{1}{2} \left[T_A^* + T_N - \sqrt{(T_A^* + T_N)^2 - 4(T_N T_A^* - K_p)} \right]$$
 [3]

The ammonia-nitrate system may not reach equilibrium within a standard GCM timestep owing to transport limitations between the gas and aerosol phases (Wexler and Seinfeld, 1990). The time taken to reach equilibrium depends on ambient temperature and RH, and the aerosol size and uptake coefficient (γ), where the uptake coefficient is defined as the number of gas molecules condensing on a particle divided by the number impacting onto the particle surface. Ackerman *et al.* (1995) find that equilibration time (τ) may range from ~2 minutes for particles with diameters of 0.1 μ m to ~1 hour for diameters of 0.5 μ m, depending on the uptake rate. Remy *et al.* (2019) assumed a globally uniform equilibration time of $\tau = 2$ minutes in their nitrate model. Here the uptake rate k_{HNO3} is determined for each aerosol mode online (Aitken, accumulation, and coarse soluble) using the first order uptake theory of Schwartz (1986) and by applying the Fuchs and Sutugin (1970) correction factors for molecular effects and for limitations in interfacial mass transport (Eqs 4-7).

$$D_g = \frac{3}{8A_c \rho_a d_a^2} \left[\frac{m_a R_a T}{2\pi} \times \frac{m_a + m_{HNO3}}{m_{HNO3}} \right]^{\frac{1}{2}}$$
 [4]

$$\lambda = \frac{3D_g}{v} = \frac{3D_g}{\sqrt{\frac{8R_aT}{\pi m_{HNO3}}}}$$
 [5]

250

275

280

$$K_n = \frac{2\lambda}{D} \tag{6}$$

$$k_{HNO3} = \frac{2\pi DD_g}{1 + \frac{4K_n}{3\gamma} \times \left(1 - \frac{0.47\gamma}{1 + K_n}\right)}$$
 [7]

Equations 4-7 determine the molecular diffusivity coefficient (D_g , m²s⁻¹), the mean free path (λ , m), the Knudsen number (K_n), and the modal condensation or uptake rate (k_{HNO3} , m³s⁻¹) respectively. Constants in the algorithm include the Avogadro constant $A_c = 6.022 \times 10^{23}$ mol⁻¹, the gas constant of dry air $R_a = 8.314$ J mol⁻¹ K⁻¹, the molar mass of dry air $m_a = 0.029$ kg mol⁻¹, the molar mass of HNO₃ $m_{HNO3} = 0.063$ kg mol⁻¹, the molecular diameter of dry air molecules $d_a = 4.5 \times 10^{-10}$ m, and the reactive uptake coefficient (γ) for HNO₃. Variables in Eqs 4-7 include the air temperature T (K) and air density ρ_a (kg m⁻³). In Eq. 5, v is the mean molecular speed (m s⁻¹). The total equilibration time τ (s) may then be related to the inverse of product of the uptake rate for one particle k_{HNO3} and the aerosol number concentration N using Eq. 8. Note that ammonium nitrate production is limited to the Aitken and accumulation modes in this study, which is reflected in the formulation of τ .

$$\tau = \frac{1}{N_{ait}k_{HNO3,ait} + N_{acc}k_{HNO3,acc}}$$
[8]

265 Rather than assume instantaneous thermodynamic equilibrium in the ammonia-nitrate system, the model assumes an exponential decay of the gas phase towards equilibrium using the equilibration time τ (see Section S1.4 in the Supplement). This approach has also been used by Ackerman *et al.* (1995), Makar *et al.* (1998), and Remy *et al.* (2019). Figure S3 in the Supplement shows the results of applying the above algorithm for τ (with γ set to 0.193 following Feng and Penner (2007)) to monthly mean aerosol and meteorology output from example UM integrations. Over many land regions, τ is approximately 2 mins near the surface and increases to ~15 mins at a model level height of 3000 m. Therefore, assuming a constant value of τ = 2 mins, as assumed by Remy *et al.* (2019), may significantly overestimate the rate which the ammonia-nitrate system approaches equilibrium, particularly at higher altitudes and over maritime regions. For example, in a 20-minute timestep the ammonia-nitrate system would move 99.995 % of the way from initial conditions towards equilibrium with τ = 2 mins assuming exponential decay, but only 86 % of the way with τ = 10 mins and 33 % of the way with τ = 50 mins.

For standard atmospheric conditions ($D_g = 10^{-5} \text{ m}^2\text{s}^{-1}$ and $v = 300 \text{ ms}^{-1}$), k_{HNO3} scales approximately linearly with the reactive uptake coefficient γ , for γ from 0.001 to 0.2 and for particle diameters between $D = 0.1 \,\mu\text{m}$ and $D = 5 \,\mu\text{m}$ (Figure S2 in the Supplement). The uptake rate increases on a particle-by-particle basis with diameter, for example, ranging from 0.2 s⁻¹ for $D = 0.1 \,\mu\text{m}$ to 5 s⁻¹ for $D = 0.5 \,\mu\text{m}$ when $\gamma = 0.1$ and when k_{HNO3} is normalised by $N = 10^{12} \,\text{m}^{-3}$. However, atmospheric Aitken mode number concentrations generally exceed accumulation mode concentrations, particularly over

populous land regions and increasingly with altitude. In example UM integrations, the ratio of accumulation to Aitken uptake $(N_{acc}k_{HNO3,acc}/N_{ait}k_{HNO3,ait})$ decreases on a global-mean basis from 8 at the surface to 1.4 at a model level height of 3000 m, but is effectively unity at the surface over key NH₃ and NO_x emitting regions such as the US, Europe and South Asia (Figure S4 in the Supplement).

285

290

295

Uptake rates (k_{HNO3} , Eq. 7) are determined for the Aitken and accumulation modes by using the modal geometric-mean dry diameters for D in Eqs 4-7, which are first corrected for hygroscopic growth using the RH-dependent parameterisation of Gerber $et\ al.$ (1985). This simplified 'modal' approach differs from Hauglustaine $et\ al.$ (2014) who divide aerosol size modes into sub-bins. If $T_A^*T_N > K_p$ then mass is transferred from the gaseous reactants NH₃ and HNO₃ to NH₄ and NO₃ in the Aitken and accumulation soluble modes using the above algorithm. Else if $T_A^*T_N \le K_p$ then NH₄ and NO₃ dissociate and all NH₄ and NO₃ mass in the Aitken to coarse soluble modes is instantaneously transferred to the gas phase. Ammonium nitrate chemistry solely involves condensation and evaporation (Makar $et\ al.$, 1998; Benduhn $et\ al.$, 2016); thus, aerosol number concentrations are not altered explicitly by nitrate chemistry in our model but may change indirectly due to altered coagulation and modemerging rates arising from the additional aerosol mass. This approach differs from Hauglustaine $et\ al.$ (2014) and Remy $et\ al.$ (2019) who assume that new particles are nucleated by the production of ammonium nitrate.

2.2.2 Coarse nitrate production

Following NH₄·NO₃ production and the associated update to HNO₃ concentrations, the first order uptake parameterisation described by Eqs 4-7 is further employed to model the irreversible uptake of HNO₃ on sea-salt and dust to produce NaNO₃ (Eq. 9) and Ca(NO₃)₂ (Eq. 10) respectively (Liao *et al.*, 2003; Hauglustaine *et al.*, 2014).

300

$$HNO_3 + NaCl \rightarrow NaNO_3 + HCl$$
 [9]

$$2HNO_3 + CaCO_3 \rightarrow Ca(NO_3)_2 + H_2CO_3$$
 [10]

305

The methodology is mostly unchanged from Hauglustaine *et al.* (2014) and Remy *et al.* (2019), with only subtle adaptations needed to integrate the scheme within UKCA-mode. As in Hauglustaine *et al.* (2014), the HNO₃ uptake coefficients (γ) for dust and sea-salt are RH-dependent variables based on measurements from Fairlie *et al.* (2010) for dust and Sander *et al.* (2011) for sea-salt. Additionally, dust is assumed to uniformly constitute 5 % Ca²⁺ by mass, which differs from the approach in Remy *et al.* (2019) who used a spatially hetereogeneous Ca²⁺ fraction. Dust alkalinity is titrated by uptake of HNO₃ until the dust pH is neutralised whereupon HNO₃ stops condensing, while no such limitation is applied for sea-salt.

310

As for the first order uptake parameterisation for ammonium nitrate (Section 2.2.1) and in Remy *et al.* (2019), rather than explicitly integrating the uptake rate over the aerosol size distribution, k_{HNO3} is calculated individually for sea-salt in the

315

320

325

335

accumulation and coarse modes using the modal geometric-mean diameters for D in Eqs 4-7, and individually for each CLASSIC dust bin using fixed geometric mean diameters (see Section S2 in the Supplement). Sea-salt number concentrations for the two modes are inversely determined from the sea-salt mass concentrations and the modal geometric-mean dry diameters, which implicitly assumes that sea-salt is externally mixed with other UKCA-mode aerosols. Dust particle number concentrations are determined from prognostic dust mass concentrations and fixed size distributions for each bin. Mapping between CLASSIC's 6 dust bins and UKCA-mode's 2 size modes follows the approach currently used to map dust emissions between CLASSIC and UKCA-mode, with Bin 2 and half of Bin 3 mapped to the accumulation mode and the other half of Bin 3 and Bins 4, 5 and 6 mapped to the coarse mode. The dust and sea-salt uptake rates (k) multiplied by the equivalent particle number concentrations (N) are then used to determine tendencies to mass concentrations of coarse NO₃ aerosol (hetNO₃), sea-salt (SS), and HNO₃ gas (Eqs 11-13). The constants in Eqs 11-13 include the molar mass of Ca(NO₃)₂ $m_{Ca(NO_3)_2} = 0.164 \text{ kg mol}^{-1}$, the molar mass of NaNO₃ $m_{NaNO_3} = 0.084 \text{ kg mol}^{-1}$, the molar mass of HNO₃ $m_{NaNO_3} = 0.063 \text{ kg mol}^{-1}$, and the molar mass of NaCl $m_{NaCl} = 0.05844 \text{ kg mol}^{-1}$.

$$\frac{\Delta [\text{hetNO}_3]}{\Delta t} = \left(\left(N k_{du,ACC} + N k_{du,COA} \right) \times \frac{m_{Ca(NO3)2}}{m_{HNO3}} + \left(N k_{SS,ACC} + N k_{SS,COA} \right) \times \frac{m_{NaNO3}}{m_{HNO3}} \right) \times [\text{HNO}_3]$$
 [11]

$$\frac{\Delta[\text{HNO}_3]}{\Delta t} = -\left(2 \times \left(Nk_{du,ACC} + Nk_{du,COA}\right) + \left(Nk_{SS,ACC} + Nk_{SS,COA}\right)\right) \times [\text{HNO}_3]$$
 [12]

$$\frac{\Delta[SS]}{\Delta t} = -\left(Nk_{SS,ACC} + Nk_{SS,COA}\right) \times \frac{m_{NaCl}}{m_{HNO3}} \times [HNO_3]$$
 [13]

330 2.2.3 Technical UM modifications

UKCA-Radaer calculates 3D aerosol extinction properties for each lognormal mode online as a function of aerosol composition and size, which are then utilised directly within the UM's radiative transfer code (Bellouin *et al.*, 2013). Each aerosol species requires prescribed spectral refractive indices (RI) spanning the electromagnetic spectrum from ultra-violet (0.2 μ m) to radiowave (1 cm) wavelengths. Ammonium nitrate RIs have previously been compiled for an older generation of the UM (HadGEM2-ES) (Bellouin *et al.*, 2011). For NH₄·NO₃, real and imaginary RIs for the wavelength spectrum 2-20 μ m are taken from Jarzembski *et al.* (2003), while RIs for > 20 μ m are assumed to be that at 20 μ m. Real RIs for 0.59-1.61 μ m are from CRC Handbook of Chemistry and Physics (Weast, 1971) and are then extended to cover the 0.1-2 μ m spectrum. Imaginary RIs for the ultraviolet and visible spectra (< 0.7 μ m) are arbitrarily set to a small number assuming little absorption (1×10⁻⁸).

To optically represent the coarse NO₃ aggregate hetNO₃, NaNO₃ spectral RIs have been compiled from the literature for this study. RI values are mostly from the tabulated data of Palik and Khanna (1998) and references therein for solid birefringent NaNO₃ crystals. From 0.23-0.42 µm, imaginary RIs are determined by applying the Beer-Lambert law to Cleaver *et al.* (1963)

345

350

355

360

absorption coefficients and assuming a lattice thickness of 3 μ m, as in Jacobson (1999). This approach is necessary to account for the second UV absorption peak missing in the data of Palik and Khanna (1998). Imaginary RIs for wavelength spectrum 0.42-5.88 μ m appear not to have been measured and are pragmatically set to the observed values for NH₄·NO₃, which are from Gosse *et al.* (1997) for 0.7-2 μ m and from Jarzembski *et al.* (2003) for 2-5.88 μ m. As is the case for NH₄·NO₃, imaginary RIs are set to an arbitrary small number (1×10⁻⁸) from 0.42-0.7 μ m to reflect the little or no absorption in that spectrum (Palik and Khanna, 1998). For the real RIs, in the 0.4-0.65 μ m spectrum values are from Cotterell *et al.* (2017) for measurements at 0 % relative humidity. From 0.66-0.67 μ m, the real RIs are provided by Ballard *et al.* (1972) and for 0.7 μ m from Ivlev and Popova (1974). Above wavelengths of 1 mm - the scope of the Palik and Khanna (1998) database - the real and imaginary RIs are set to the value at 1 mm. The compiled spectral RIs for NH₄·NO₃ and NaNO₃ are shown in Fig. S5 in the Supplement and tabulated in Tables S3 and S4 in the Supplement.

The default configuration of UKCA-mode and by extension UKCA-Radaer, as used in UKESM1 and HadGEM3-GC3.1, represents tropospheric SO₄ with (NH₄)₂·SO₄ refractive indices and (optionally) stratospheric SO₄ with sulphuric acid (H₂SO₄) refractive indices. This is internally inconsistent given that the tropospheric SO₄ is missing the considerable mass associated with NH₄. The new UKCA-mode nitrate configuration presented here that includes SO₄, NO₃, and NH₄ as separate tracers firstly apportions NH₄ mass to NO₃ using a 1:1 molar ratio and the NH₄ remainder to SO₄ using a 2:1 molar ratio (represented by NH₄·NO₃ and (NH₄)₂·SO₄ refractive indices respectively), and then represents remaining SO₄ mass with H₂SO₄ refractive indices. Another internal inconsistency in the default UKCA-mode configuration is that NH₄ is not explicitly represented during hygroscopic growth (i.e. in the ZSR algorithm), owing to the lack of an NH₄ tracer. In the new nitrate scheme, NH₄, NO₃, and hetNO₃ are explicitly added to the hygroscopic growth routine, with NH₄ counteracting hygroscopic aerosol growth and NO₃ and hetNO₃ promoting it.

2.3 Simulation design

The scientific purpose of this study is to investigate whether representing the kinetic limitation of HNO₃ condensation onto pre-existing aerosols during the production of ammonium nitrate significantly alters the resulting atmospheric concentrations of ammonium nitrate and, indirectly, coarse nitrate aerosol. To this end, four sensitivity simulations are performed with the UM and the new nitrate scheme: 1. A control simulation with no nitrate aerosol and the default UKCA-mode setup 2 (i.e. standard GA7.1) (CNTL); 2. A simulation with NH₄·NO₃ reaching equilibrium instantaneously (INSTANT); 3. A simulation with the HNO₃ uptake rate set to $\gamma = 0.193$ in Eq. 7 following Feng and Penner (2007) (FAST); and 4. A simulation with the HNO₃ uptake rate set to $\gamma = 0.001$ in Eq. 7 following Bauer *et al.* (2007) (SLOW). These simulations are further listed in Table 2 and were selected to span the range of HNO₃ uptake rates on standard atmospheric particles from the literature (Bauer *et al.*, 2007). All simulations are run for 25 model years with only the last 20 years used for analysis.

395

400

Simulation name	Description				
CNTL	Control simulation - no nitrate aerosols				
INSTANT	Nitrate aerosols – instantaneous equilibrium for NH ₄ NO ₃ ($\tau = 0$ in Eq. 8)				
FAST	Nitrate aerosols– fast uptake coefficient for NH_4NO_3 ($\gamma=0.193$ in Eq. 7)				
SLOW	Nitrate aerosols– slow uptake coefficient for NH ₄ NO ₃ ($\gamma = 0.001$ in Eq. 7)				

Table 2: A description of the UM simulations performed in this study

In these simulations, GA7.1 is forced by fixed sea surface temperature and sea ice fields prescribed as monthly climatologies for the year 2000, created by averaging over 1995-2004 the time-series data generated for CMIP6 atmosphere-only simulations. Additionally, aerosol and gaseous emissions are primarily prescribed as monthly fields from the CMIP6 historical emissions inventory (DECK/ Historical CMIP6 version 6.2.0), averaged over the 1995-2004 time-period. Table S2 in the Supplement gives global and annual total emissions for each of the UKCA chemical species. The CMIP6 emissions inventory was derived from the Community Emissions Data System (CEDS) project which is documented by van Marle *et al.* (2017), Hoesly *et al.* (2018) and Feng *et al.* (2020); while its integration within the UM is detailed by Sellar *et al.* (2020). The simulation design (i.e. perpetual year 2000 conditions) follows standard simulation protocol for UKCA model development in the Met Office.

Global anthropogenic NH₃ emissions in the year 2000 from CEDS amount to 50 Tg yr⁻¹, in vast excess of equivalent emissions from the CMIP5-derived MACCitty inventory of 37.5 Tg yr⁻¹ (Granier *et al.*, 2011). Hoesly *et al.* (2018) attribute this disparity to differing assumptions in agricultural NH₃ trends and to the lack of consideration for wastewater and human waste NH₃ emissions in MACCity. Oceanic NH₃ emissions in these simulations – which account for 26 % of total NH₃ emissions – follow Bouwman *et al.* (1997) and biomass-burning emissions are described by van Marle *et al.* (2017). NH₃ exhibits a strong seasonal cycle with global emissions in June-August ~50 % greater than in December-February (Fig. S6b in the Supplement). The global NH₃ source of ~65 Tg yr⁻¹ in these simulations is close to the model-mean value of 63 Tg yr⁻¹ for GCMs participating in the AeroCom phase III nitrate experiment (Bian *et al.*, 2017). Nitrogen oxide (NO_x) emissions from anthropogenic, biomass-burning and aircraft sources are prescribed as monthly fields from the CEDS inventory (van Marle *et al.*, 2017; Hoesly *et al.*, 2018). NO_x emissions from soils are taken from Yienger and Levy (1995), corrected to a total source of 12 Tg[NO] yr⁻¹ (Sellar *et al.*, 2020). The global and annual total NO_x emissions amount to 106 Tg[NO] yr⁻¹. Further details on gas and aerosol emissions in these simulations is provided in Section S3 in the Supplement.

3 Results

405

410

425

430

3.1 Global and annual mean metrics

Table 3 shows global tropospheric and annual mean budgets for HNO₃, NH₃, NO₃, and NH₄ from the FAST and SLOW simulations alongside equivalent metrics from the present day simulations of Xu and Penner (2012) (hereafter XP12), Hauglustaine *et al.* (2014) (hereafter HA14), and from the AeroCom model intercomparison project detailed by Bian *et al.* (2017) (hereafter BI17). The INSTANT simulation is near-indistinguishable from FAST using these metrics (Table S5 in the Supplement) - suggesting that NH₄·NO₃ concentrations in FAST reach thermodynamic equilibrium near instantaneously - and INSTANT is thus omitted from further analysis. With respect to Table 3 and to the rest of the Results section, 'fine NO₃' refers to NO₃ associated with NH₄ while 'coarse NO₃' refers to NO₃ associated with dust and sea-salt (i.e. NO₃ in hetNO₃).

The net HNO₃ production rates in FAST (44.1 Tg[N] yr⁻¹) and SLOW (44.2 Tg[N] yr⁻¹) are comparable to equivalent rates in HA14 (45.1 Tg[N] yr⁻¹) and XP12 (38 Tg[N] yr⁻¹). Additionally, the NH₃ emissions in FAST and SLOW (53.5 Tg[N] yr⁻¹) are comparable to HA14, XP12, and BI14 (50.5, 53.6, and 51.8 Tg[N] yr⁻¹ respectively) suggesting that to the first order the ammonium and nitrate precursor gas emissions are commensurate on a global basis with prior studies. Total NO₃ (i.e. fine + coarse) production in the FAST (22.9 Tg[N] yr⁻¹) and SLOW (19.9 Tg[N] yr⁻¹) simulations is significantly greater than in HA14 (14.4 Tg[N] yr⁻¹) and XP12 (16 Tg[N] yr⁻¹) and at the upper range of the AeroCom models in BI17 (Mean = 13.7, Range = 1.5 to 28.2 Tg[N] yr⁻¹). This is also the case for NH₄ production rates where FAST (30.4 Tg[N] yr⁻¹) and SLOW (25.6 Tg[N] yr⁻¹) exceed equivalent values in HA14 (17.5 Tg[N] yr⁻¹) and BI17 (Mean = 23.7, Range = 17.8 to 29.5 Tg[N] yr⁻¹), and are comparable with XP12 (30.5 Tg[N] yr⁻¹). This suggests that NH₄ and NO₃ aerosol production in the UM is at the upper end of efficiency when compared to other existing climate models.

Significant differences between the FAST and SLOW simulations are highlighted by the global NO₃ metrics in Table 3. In particular, the fine NO₃ source is 6.3 Tg[N] yr⁻¹ in FAST but only 2.7 Tg[N] yr⁻¹ in SLOW, marking a 57 % decrease. Conversely, SLOW exhibits 5 % more coarse NO₃ production than in FAST. The difference is equally discernible in the burdens, with 47 % of the total NO₃ burden as coarse NO₃ in FAST compared to 67 % in SLOW. This can be compared to a 72 % coarse fraction in HA14 and 47 % in XP12. The total NO₃ burdens of 0.2 Tg[N] in FAST and 0.15 Tg[N] in SLOW are commensurate with 0.18 Tg[N] in HA14, 0.17 Tg[N] in XP12, and the AeroCom median of 0.14 Tg[N] in BI17. The NH₃ burden in FAST (0.04 Tg[N]) is at the lower end of the AeroCom range in BI17 (0.04 to 0.7 Tg[N]) while the NH₄ burden in FAST (0.42 Tg[N]) is at the upper range of BI17 models (0.13 to 0.58 Tg[N]) which corroborates the assertion that NH₄ and NO₃ aerosol production in the UM is at the upper end of efficiency when compared to other existing climate models, and suggests that NH₃ rather than HNO₃ is the limiting factor controlling NH₄·NO₃ production in these simulations. In summary, Table 3 illustrates the close parity with regards global and annual mean metrics between the UM simulations and previous nitrate simulations with various climate models from the literature.

				FAST	SLOW	XP12	HA14	BI17
HNO ₃	Source	Gas phase	Tg[N] yr ⁻¹	35.2	35.7	24.4	44.6	[82, 92]
		Aerosol phase		18.6	18.2	17.9	3.9	[4.7, 28.5]
		Total		53.8	53.9	42.3	48.5	-
	Loss	Gas phase	Tg[N] yr ⁻¹	9.7	9.7	4.3	3.4	[47, 66]
		Fine nitrate		6.4	2.7	8.8	3.2	[2, 9.5]
		Coarse nitrate		16.6	17.3	7.2	11.2	-
		Dry deposition		6	8	7.8	14.7	10.9 [8, 16.4]
		Wet deposition		14.9	15.8	14.5	17	25.1 [11, 37.2]
		Total		53.4	53.4	42.6	49.5	-
		Wet fraction	%	71.4	66.4	65	53.6	68.6 [57.8, 76.3]
	Burden		Tg[N]	0.48	0.48	0.3	0.3	0.56 [0.15, 1.27]
	Lifetime		days	3.2	3.2	4.8	2.3	[3.5, 5.7]
NO ₃	Source	Fine nitrate	Tg[N] yr ⁻¹	6.3	2.7	8.8	3.2	-
		Coarse nitrate		16.6	17.3	7.2	11.2	-
		Total		22.9	19.9	16	14.4	13.7 [1.5, 28.2]
	Loss	Dry deposition	Tg[N] yr ⁻¹	8.9	8.3	4	1.7	4.7 [0.3, 10.8]
		Wet deposition		14.3	11.8	12	12.7	9.9 [1.2, 20.5]
		Total		23.2	20.1	16	14.4	13.7 [1.5, 28.3]
		Wet fraction	%	61.7	58.6	75	88.2	77 [56.3, 90.8]
	Burden	Fine nitrate	Tg[N]	0.11	0.05	0.09	0.05	-
		Coarse nitrate		0.09	0.1	0.08	0.13	-
		Total		0.2	0.15	0.17	0.18	0.14 [0.03, 0.42]
	Lifetime	Fine nitrate	days	6.2	7.2	3.7	5.6	-
		Coarse nitrate		2	2	4	4.2	-
		Total		3.2	2.7	3.9	4.6	5 [2, 7.8]
NH ₃	Source	Emissions	Tg[N] yr ⁻¹	53.5	53.5	53.6	50.5	51.8 [46.9, 58.1]
	Loss	Gas phase	Tg[N] yr ⁻¹	-	-	-	0.6	-
		NH ₄ formation		30.4	25.6	30.5	17.5	26.4 [18.4, 34.6]
		Dry deposition		17.4	20.4	12.7	21.3	15.4 [10.4, 24.1]
		Wet deposition		5.7	7.5	9.6	11.1	11 [5.6, 15.3]

		Total		53.4	53.5	53.6	50.5	53.2 [49.8, 57.9]
		Wet fraction	%	24.6	27	43	34.3	40.7 [24.5, 58.1]
	Burden		Tg[N]	0.04	0.06	0.07	0.09	0.16 [0.04, 0.7]
	Lifetime		days	0.28	0.41	0.46	0.63	0.72 [0.29, 0.98]
NH ₄	Source	NH ₃ conversion	Tg[N] yr ⁻¹	30.4	25.6	30.5	17.5	23.7 [17.8, 29.5]
	Loss	Dry deposition	Tg[N] yr-1	5.7	4.7	4.5	2.5	4.5 [1.3, 16.3]
		Wet deposition		24.9	21	25.9	14.9	20.7 [5.6, 34.6]
		Total		30.5	25.7	30.4	17.4	25.2 [17.7, 37.4]
		Wet fraction	%	81.4	81.8	85.2	85.6	81 [25.6, 94.7]
	Burden		Tg[N]	0.42	0.36	0.26	0.22	0.25 [0.13, 0.58]
	Lifetime		days	5	5	3.2	4.5	4.3 [1.9, 9.8]

Table 3: Global and annual-mean metrics for nitric acid (HNO₃), nitrate (NO₃), ammonia (NH₃) and ammonium (NH₄) in the FAST and SLOW simulations compared to Xu and Penner (2012), Hauglustaine *et al.* (2014) (HA14) and the AeroCom phase III model intercomparison project described in Bian *et al.* (2017) (BI17). Square brackets in the BI17 column denoted the AeroCom inter-model range.

3.2 Annual mean burdens and concentrations

Figure 1 shows the annual-mean mass burdens of NH₄, NO₃ and hetNO₃ in the FAST and SLOW simulations. While units of mg[N]m⁻² are used in Fig. 1, units of 'mg of substance per m²' are used in the following text for direct comparison with HA14. Fine NO₃ associated with NH₄ is concentrated over land regions, particularly in the Northern Hemisphere. The fine NO₃ burden averaged over European land is 1 mg[NO₃]m⁻² in SLOW and 3 mg[NO₃]m⁻² in FAST. The total NO₃ over Europe is 3 mg[NO₃]m⁻² in SLOW and 5 mg[NO₃]m⁻³ in FAST, which is close to the simulated present day values of 3-4 mg[NO₃]m⁻² in HA14. Fine NO₃ peaks in Europe over the Mediterranean at 5 mg[NO₃]m⁻² in SLOW and 12 mg[NO₃]m⁻² in FAST. South Asia exhibits the greatest regional fine NO₃ burdens with 8 mg[NO₃]m⁻² in SLOW and 14 mg[NO₃]m⁻² in FAST. The total NO₃ burdens over South Asia of 11 mg[NO₃]m⁻² in SLOW and 15 mg[NO₃]m⁻² in FAST are somewhat greater than equivalent values in HA14 of 5-10 mg[NO₃]m⁻². Conversely, the total NO₃ concentrations in East Asia (China) are smaller in these simulations (5 mg[NO₃]m⁻² in SLOW and 9 mg[NO₃]m⁻² in FAST) than in HA14 (10-20 mg[NO₃]m⁻²). Over Central North America, the total NO₃ burden is 2 mg[NO₃]m⁻² in SLOW and 5 mg[NO₃]m⁻² in FAST, which compares to 3-4 mg[NO₃]m⁻² in HA14. Reconciling all these inferences, FAST exhibits twice as much fine NO₃ burden on average as does SLOW. Whereas fine NO₃ burdens are concentrated over land, coarse NO₃ (i.e. hetNO₃) is more evenly spread over the Earth and prevalent over maritime areas where it forms on sea-salt and aged dust particles (Figs 1g,h). Over European land, coarse NO₃ constitutes 31 % of the total NO₃ burden in FAST and 63 % in SLOW. Equivalent figures for East Asia are 15 and 30 %; South Asia – 10

440

445

450

455

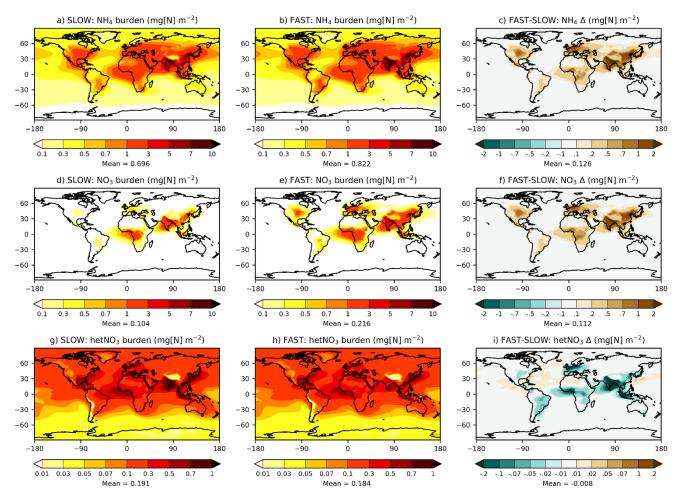


Figure 1: Annual-mean NH4, NO3, and hetNO3 burdens from the SLOW and FAST simulations

and 23 %; and Eastern North America – 45 and 83 %. Therefore, the partitioning of NO₃ between the coarse and fine modes is highly sensitive to the uptake rate of HNO₃ on ambient aerosol.

Figure 2 shows maps of annual-mean near-surface concentrations of NH₄, NO₃ and hetNO₃ in the SLOW and FAST simulations. The spatial distributions of fine NO₃ are similar to those reported in BI17 and HA14 with peak concentrations over North America, Europe, South Asia, South East Asia, and East Asia land regions, coincident with the highest NH₃ and NO_x emitting regions (Figure S6 in the Supplement). The average total NO₃ concentrations over Europe are 1.5 and 3.5 μ g[NO₃]m⁻³ in SLOW and FAST respectively, which can be compared to 4-5 μ g[NO₃]m⁻³ in HA14. In Central North America, total NO₃ concentrations amount to 1 and 3 μ g[NO₃]m⁻³ on average in SLOW and FAST, with 50 % and 15 % contributions from coarse NO₃. The regional-mean total NO₃ concentrations in East Asia amount to 3.5 and 6.5 μ g[NO₃]m⁻³ and in South

480

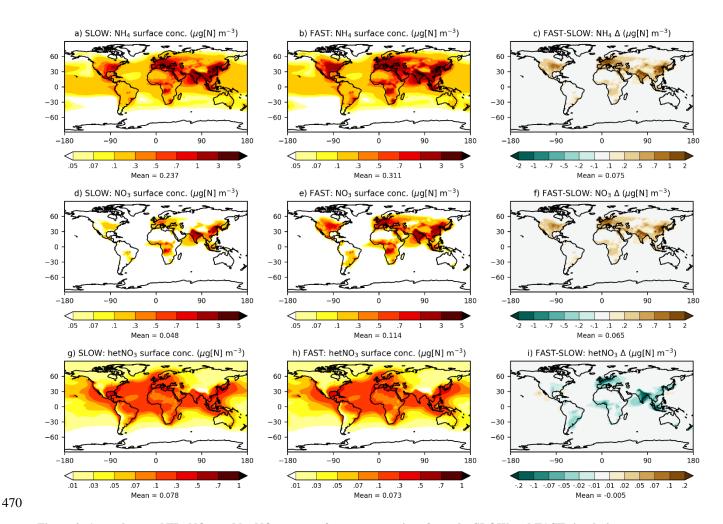


Figure 2: Annual-mean NH4, NO3, and hetNO3 near-surface concentrations from the SLOW and FAST simulations

Asia amount to 5.5 and 7.5 μg[NO₃]m⁻³, in SLOW and FAST respectively. Total NO₃ differences between FAST and SLOW are driven by changes to the fine NO₃ concentrations (Figs 2d-f), with comparatively minimal changes to coarse NO₃ (Figs 2g-i).

Figure 3 shows the zonal mean, vertical distribution of NO_3 , NH_4 and $het NO_3$ aerosol in the FAST and SLOW simulations. NH_4 reaches a greater altitude than fine NO_3 owing to its long-lived association with SO_4 aerosol (Figs 3a-b). Due to the high solubility of NH_3 gas and thus swift wet removal from the atmosphere, free ammonia is mostly limited to the bottom 1 km of the atmosphere (Bellouin *et al.*, 2011), which limits the vertical extent to which $NH_4:NO_3$ may form (Figs 3c-d). This is further corroborated by Figure S8 in the Supplement which shows the 'gas ratio', defined as ($[NH_3] + [NH_4] - 2 \times [SO_4]$) divided

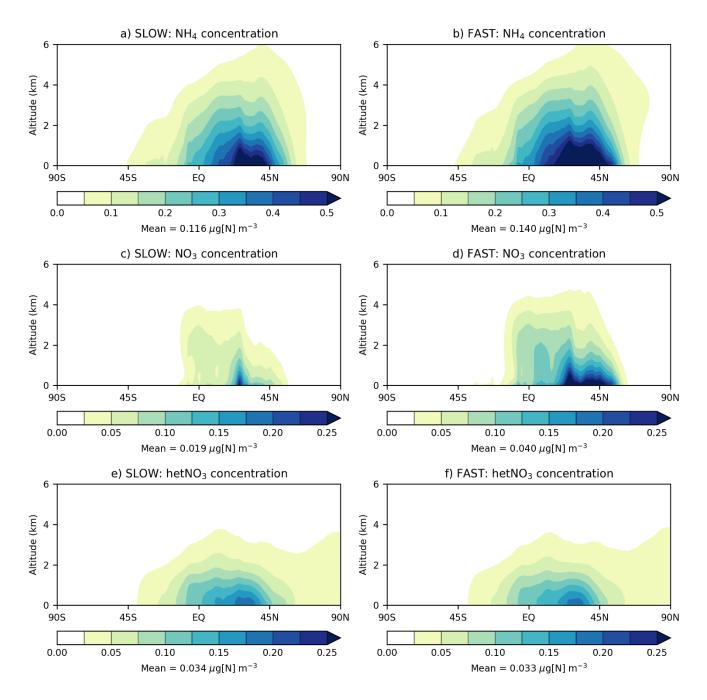


Figure 3: Annual and zonal-mean NH4, NO3, and hetNO3 concentrations vs altitude from the SLOW and FAST simulations

by ([HNO₃] + [NO₃]), with values greater than 1 indicating that conditions are HNO₃-limited and less than 1 indicating conditions are NH₃-limited (Ansari and Pandis, 1998). It is clear from Fig. S8 that NH₄·NO₃ production is HNO₃- limited at

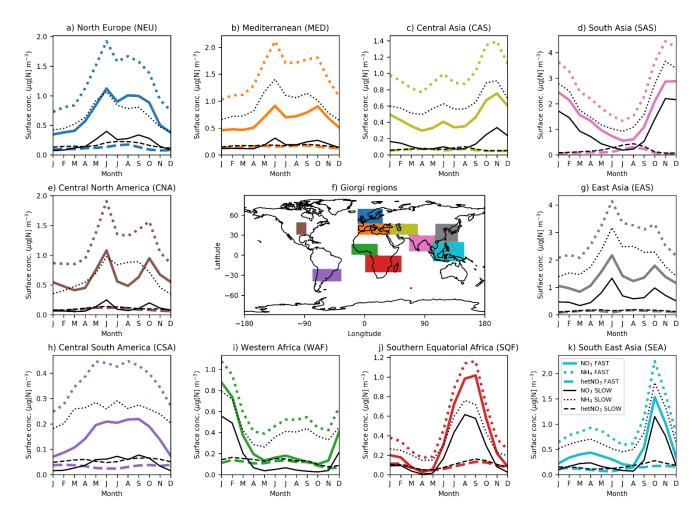


Figure 4: Regional and monthly-mean NH₄, NO₃, and hetNO₃ near-surface concentration time-series for the SLOW and FAST simulations for 10 'Giorgi regions' [Giorgi, 2006] (land-only) representing high NO₃ concentration areas.

the surface over land regions but that conditions are ubiquitously NH_3 -limited above altitudes of 1000 m. While $NaNO_3$ and $Ca(NO_3)_2$ are not volatile like NH_4 : NO_3 , they are instead associated with coarse particles that are readily removed from the atmosphere by gravitational sedimentation and wet scavenging, and thus remain confined to the lowest 1 km of the atmosphere (Figs 3e-f).

3.3 Regional surface concentrations

490

495

Figure 4 shows the seasonal trends in NO₃, NH₄ and hetNO₃ near-surface concentrations averaged over land in 10 'Giorgi' regions (Giorgi, 2006), selected due to their high fine NO₃ concentrations (Fig. 2). For most of the regions (NEU, MED, CNA, EAS, WAF, SQF, and SEA), NH₄ and fine NO₃ trends in both the FAST and SLOW simulations are tightly coupled to trends

500

505

510

515

520

in regional NH₃ emissions (Figure S7 in the Supplement), which further corroborates the notion that NH₄·NO₃ formation may be limited in these regions by available NH₃. NH₄·NO₃ concentrations in the CAS, SAS, and CSA regions may be more dependent on seasonal meteorology than other regions, for instance SAS (i.e. South Asia) experiences a strong summer monsoon which would enhance wet deposition of NH₄·NO₃ during summer and thus reduce concentrations. SAS also has consistently elevated NH₃ concentrations throughout the year and is thus less sensitive to seasonal trends in NH₃ emissions (Zhu *et al.*, 2015). In all regions, NH₄ and fine NO₃ concentrations exhibit a strong seasonal cycle in both SLOW and FAST while the seasonal cycle in coarse NO₃ is less apparent. In the SLOW simulation, coarse NO₃ concentrations are of similar magnitude to fine NO₃ concentrations in NEU, MED, CAS, CAN, CSA, and WAF on a regional-mean basis (Fig. 4).

Figures 5 and 6 show the near-surface concentrations of HNO₃, NH₄ and total NO₃ over the US (Fig. 5) and Europe (Fig. 6) in the FAST and SLOW simulations compared to observations from the Clean Air Status and Trends Network (CASTNet, www.epa.gov/castnet, last access: January 2021, Finkelstein et al. (2000)) for the US and the European Monitoring and Evaluation Programme (EMEP, http://ebas.nilu.no/, last access: March 2021, Torseth et al. (2012)) for Europe. In both networks the sites are located so as to represent the wider region. Data processing and site selection for the observations follows the methodology described in Hardacre et al. (2021), who have compared SO₂ and SO₄ concentrations from UKESM simulations with CASTNet and EMEP observations. CASTNet and EMEP data are averaged over the period 1994-2013 where available. For CASTNet there are a total of 16 Western sites and 33 Eastern sites (49 in total) that meet data processing criteria in this study (where the east-west delineation is described in Hardacre et al. (2021)). For EMEP there are 59 sites for HNO₃, 59 sites for NH₄ and 80 sites for NO₃ meeting data processing criteria over the 1994-2013 timeframe. For the scatterplots in Figs 5 and 6, model output is linearly interpolated to measurement sites. It is important to note that the absolute magnitudes of concentrations are not directly comparable between the simulations and observations given that the simulations assume constant NO_x and NH₃ emissions based on the year 2000 whereas NO_x and NH₃ emissions in reality are transient. This becomes apparent when comparing the network-mean concentrations in the simulations with the observations (Figure S9 in the Supplement) where there is a clear negative trend in HNO₃, NH₄ and NO₃ concentrations in both CASTNet and EMEP observations from 1994 to 2013.

Figure 5 shows that the spatial distributions of HNO₃, NO₃ and NH₄ over the US are similar in FAST and SLOW, with peak HNO₃ concentrations in the east and midwestern states reflecting industrial NO_x emissions, and peak NO₃ and NH₄ in the midwestern and central states reflecting agricultural NH₃ emissions (Park *et al.*, 2004). The absolute magnitudes of NH₄ and NO₃ concentrations are closer to CASTNet observations in SLOW (Fig. 5j) than in FAST (Fig. 5k), but the spatial correlation coefficients are better in the eastern US in FAST (*R* = 0.87 for NH₄ and *R* = 0.61 for NO₃) than in SLOW (*R* = 0.77 for NH₄ and *R* = 0.06 for NO₃). This suggests that the positive NO₃ (and correspondingly NH₄) biases in FAST may emanate from a surplus of HNO₃ in the model, given that HNO₃ is positively biased in the eastern US in both FAST and, to an even greater extent, SLOW (Fig. 5d).

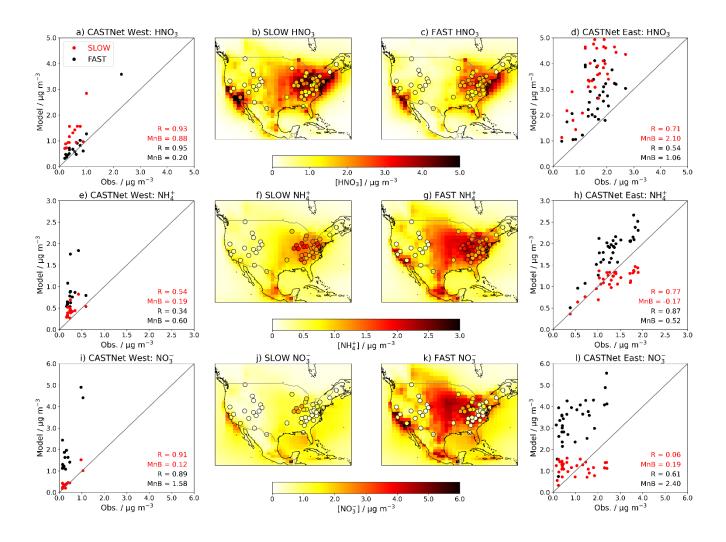


Figure 5: Annual-mean HNO₃, NH₄ and total-NO₃ near-surface concentrations in the FAST and SLOW simulations over North America compared to CASTNet observations averaged over 1994-2013. In (b), (c), (f), (g), (j) and (k), coloured contours show simulated concentrations while overlayed filled circles represent CASTNet observations. In (a), (d), (e), (h), (i) and (l), 'R' is the Pearson's correlation coefficient and 'MnB' is the mean bias between simulated and observed concentrations

Over Europe, NO₃ and NH₄ concentrations are closer to EMEP observations in the SLOW simulation than in the FAST simulation (e.g. smaller mean biases in Figs 6d,g). NO₃ concentrations in both FAST and SLOW peak in the Po Valley (North Italy) and Benelux Region (Belgium and the Netherlands), in anecdotal concordance with Druge *et al.* (2019) and references therein. The Po Valley peak in both the EMEP observations and simulations is due to the entrapment of industrial air pollution by regional geography. The observed NH₄ and HNO₃ peaks over the Czech Republic may be attributable to high agricultural NH₃ emissions pre-2004, with concomitant concentration declines owing to the Gothenburg protocol (Fortems-Cheiney *et al.*, 2016; Giannakis *et al.*, 2019). Neither of the observed NH₄ or HNO₃ concentration peaks in the Po Valley or the Czech

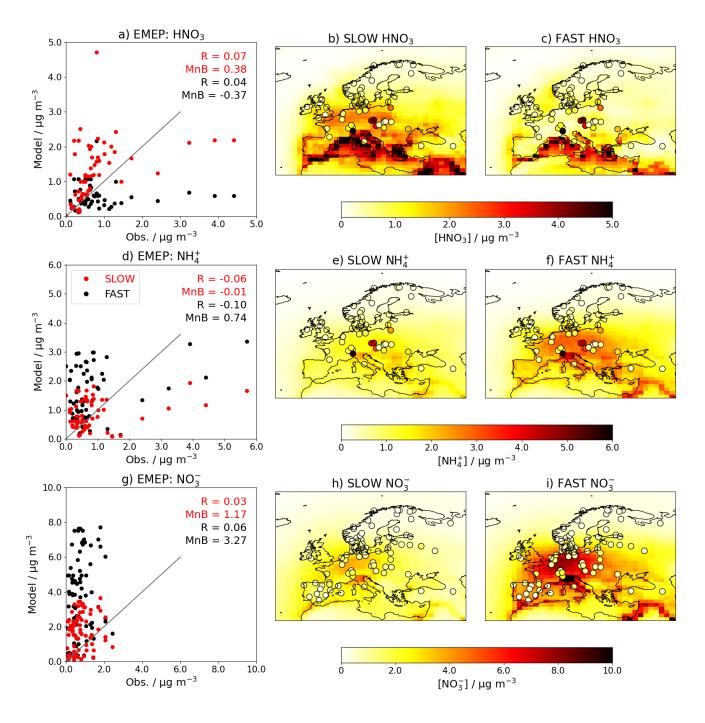


Figure 6: Annual-mean HNO₃, NH₄ and total-NO₃ near-surface concentrations for the FAST and SLOW simulations over Europe compared to EMEP observations averaged over 1994-2013 where available. In (b), (c), (e), (f), (h) and (i), coloured contours show simulated concentrations while overlayed filled circles represent EMEP observations. In (a), (d), and (g), 'R' is the Pearson's correlation coefficient and 'MnB' is the mean bias between simulated and observed concentrations

555

560

565

570

575

580

Republic are well captured by FAST or SLOW simulations which may be attributed to the coarse model resolution employed here (N96) and the close proximity of measurement sites to NH₃ sources.

Figure 7 shows the statistical distribution of 6 hourly total NO₃ and NH₄ concentrations from the FAST and SLOW simulations interpolated to two EMEP supersites in the UK – Auchencorth Moss and Chilbolton Observatory – and compared with observed diurnal concentrations from those sites (UK AIR, https://uk-air.defra.gov.uk/data/, last access: 29 January 2021). Both sites use MARGA instruments – a combination of wet rotating denuders for gas measurements, and stream jet aerosol collectors for aerosol measurements – allowing for accurate partitioning between the aerosol and gas phases for volatile ammonium nitrate (Aas et al., 2012; Twigg et al., 2016). Only data recorded at the precise hours of 06:00, 12:00, 18:00, and 24:00 UTC that has passed the Department for Environment, Food & Rural Affairs' (DEFRA) quality control is utilised from the observations. Figure S10 in the Supplement shows the equivalent statistics for HNO₃ and NH₃ gases compared to observations. It is clear from Fig. 7 that NH₄ and NO₃ are significantly reduced in the SLOW simulation with respect to the FAST simulation. It is also clear that the diurnal cycle, with NH₄ and NO₃ peaking at night (24Z or 00Z) and early morning (06Z) is both observed and skilfully simulated in both FAST and SLOW. Interestingly, the model shows similar biases to the Met Office's AQUM in: an over prediction of NO₃ during night-time in the summer; a slight under prediction of NO₃ in the winter; a large over prediction of HNO₃ during the day in the summer; and a smaller over-prediction of HNO₃ at night in the winter. The curious over-prediction of NH₃ at night in winter (Fig. S10 in the Supplement) was also observed in previous incarnations of the AQUM and will be addressed in the UM in future by imposing a diurnal cycle to NH₃ emissions.

Figure 8 shows the seasonal cycle in total PM_{2.5} concentrations in the CNTL, FAST, and SLOW simulations compared to collocated PM_{2.5} observations from the Global Aerosol Synthesis and Science Project (GASSP; http://gassp.org.uk/data/, last access: 2 July 2020, Reddington *et al.*, 2017). GASSP amalgamates non-urban PM_{2.5} measurements from three major networks: The Interagency Monitoring of Protected Visual Environments (IMPROVE) project in North America, the European Monitoring and Evaluation Programme (EMEP), and Asia-Pacific Aerosol Database (A-PAD). The PM_{2.5} analysis proceeds as in Turnock *et al.* (2020), with monthly-mean observations determined for each measurement site averaged over the years 2000-2010 and over each region. This is then compared with the simulated PM_{2.5} output that has been linearly interpolated to individual site locations and averaged over the same time period and regions. Also shown in Fig. 8 is Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis data (Buchard *et al.*, 2017; Randles *et al.*, 2017), which closely follows GASSP surface observations in Europe and North America but is less successful in other regions where a smaller number of ground based observations are available, for example, incorrectly modelling the seasonal PM_{2.5} cycles in South Asia and Pacific AUS NZ.

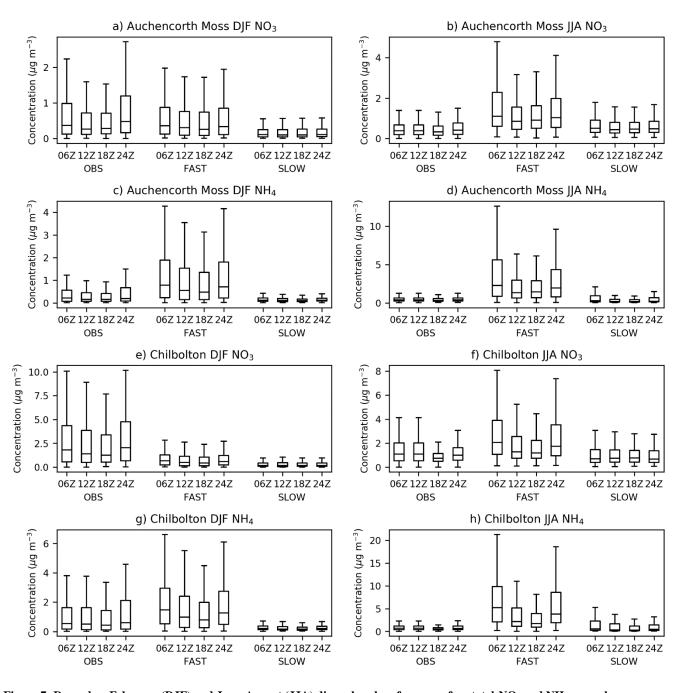


Figure 7: December-February (DJF) and June-August (JJA) diurnal cycles of near-surface total-NO $_3$ and NH $_4$ aerosol concentrations in the FAST and SLOW simulations interpolated to two European Monitoring and Evaluation Programme (EMEP) supersites in the UK – Auchencorth Moss [55.79216 $^{\circ}$ N, -3.2429 $^{\circ}$ E] and Chilbolton [51.149617 $^{\circ}$ N, -1.438228 $^{\circ}$ E], alongside 6 hourly observations from 2014-2015 for Auchencorth Moss and 2016-2020 for Chilbolton

600

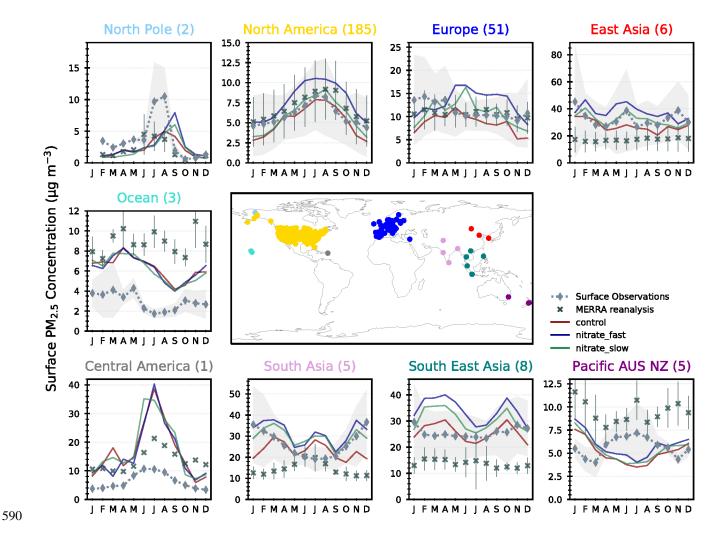


Figure 8: Regional and monthly-mean surface $PM_{2.5}$ concentrations in the UM simulations (red, blue green lines), CMIP6 ensemble means, and from MERRA reanalyses and GASSP surface observations

The largest observational networks in GASSP are over North America (IMPROVE) and Europe (EMEP). Over North America, the slight negative PM_{2.5} bias in CNTL is brought closer to observations in SLOW and over-corrected in FAST which now exhibits a slight positive bias (Fig. 8). Over Europe observations suggest that PM_{2.5} slightly peaks in DJF, which is not the case in any of the UM simulations in which PM_{2.5} peaks in JJA. Druge *et al.* (2019) observed the same seasonal bias over Europe in the ALADIN-Climate regional model, which they attributed to uncertainties in the annual cycle of NH₃ and HNO₃ precursor gases. In Fig. 7, the simulated NH₄ concentrations in JJA vastly exceeded the observations at both UK-based supersites, indicating that summertime NH₃ gas emissions may be biased high in the prescribed CEDS emissions dataset over Europe. Over South Asia, East Asia, and South East Asia the CNTL simulation adeptly captures the seasonal PM_{2.5} cycle and the addition of ammonium and nitrate in FAST and SLOW induces a slight positive bias. Figure 9 collates the annual mean

615

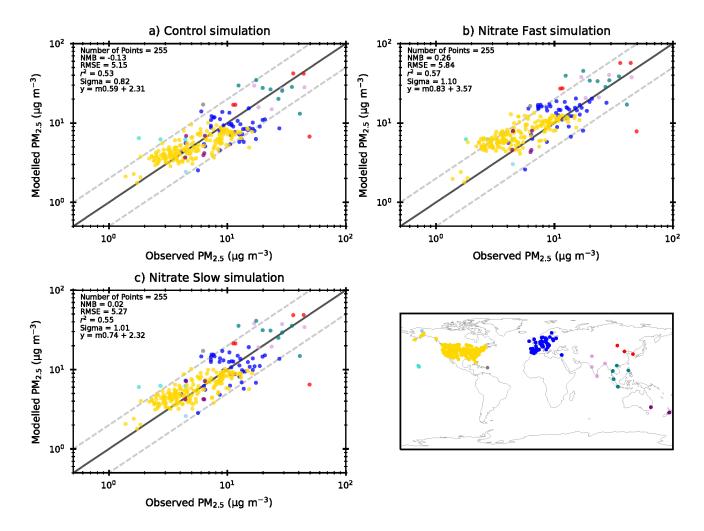


Figure 9: Scatterplots of observed vs simulated annual-mean PM2.5 concentrations in the CNTL, SLOW and FAST simulations accompanied with relevant statistics – the normalised mean bias (NMB), the root mean square error (RMSE), the correlation coefficient (r²) and the ratio between standard deviations (Sigma)

observed and simulated PM_{2.5} concentrations for each GASSP site, therefore statistics such as the normalised mean bias (NMB) are mostly weighted to the expansive North American and European networks. Nevertheless, it is interesting to note from Fig. 9 that the slight negative NMB in CNTL (-0.13) is completely compensated in SLOW (+0.02) and overcompensated in FAST (+0.26). However, all of the above inferences must be predicated on the fact the UM simulations use aerosol and gas emissions centred on the year 2000 whereas the observations are a composite of the years 2000-2010 and thus the temporal differences in emissions may partially explain disparities between the UM and observations. A robust result from Figs 8 and 9 is that both SLOW and FAST tend to increase PM_{2.5} concentrations – particularly over Europe, Asia, and North America – with FAST inducing approximately double the PM_{2.5} change than in SLOW.

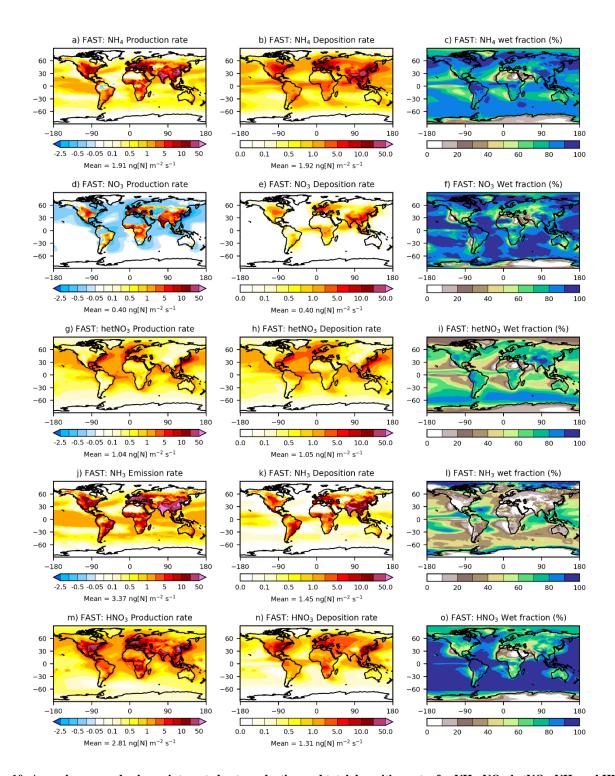


Figure 10: Annual-mean and column-integrated net-production and total deposition rates for NH₄, NO₃, hetNO₃, NH₃ and HNO₃, alongside the 'wet fraction' (the ratio of wet scavenging to total deposition), in the FAST simulation

635

640

645

650

3.4 Ammonium and nitrate production and deposition

Figure 10 shows the column-integrated annual-mean net production (or emission) rate, total deposition rate, and wet deposition fraction for NH₄, NO₃, hetNO₃, NH₃ and HNO₃ in the FAST simulation. NH₄ and fine NO₃ are primarily produced over land regions near NH₃ sources (Fig. 10j), with net NO₃ dissociation over adjacent land regions and oceans (Figs 10a,d). Figure S11 in the Supplement shows that whereas net NH₄ production is positive on a zonal-mean basis at altitudes up to 6 km, net fine NO₃ production is negative above 1 km north of 30°N latitude. Most fine NO₃ deposition is confined to land regions (Fig. 10e) while coarse NO₃ is primarily deposited over oceans (Fig. 10h). Total deposition rates over land are 16, 5, and 4 Tg[N] yr⁻¹ for NH₄, fine NO₃ and coarse NO₃ respectively and 18 and 12 Tg[N] yr⁻¹ for NH₃ and HNO₃ gases respectively. Total deposition rates over oceans amount to 15, 2, and 13 Tg[N] yr⁻¹ for NH₄, fine NO₃ and coarse NO₃ respectively and 15 and 9 Tg[N] yr⁻¹ for NH₃ and HNO₃ gases respectively. This indicates that the dominant pathway for fixed nitrogen deposition to the oceans in these simulations, excluding river discharge sources, is via NH₄, NH₃ and coarse NO₃ deposition. The spatial distribution of chemical production and deposition is similar in the FAST (Fig. 10) and SLOW (Fig. S12 in Supplement) simulations.

3.5 Aerosol optical depth and radiation changes

Figure 11 shows the annual-mean total aerosol optical depth at 550 nm (AOD₅₅₀) in the UM simulations (CNTL, FAST, and SLOW), with contributions from the Aitken, accumulation and coarse soluble modes, the Aitken insoluble mode, and mineral dust. Also plotted is the 2003-2012 mean MODIS 'collection 6' AOD₅₅₀ satellite data, which merges NASA's "Dark Target" and "Deep Blue" algorithms and is widely used for validating aerosol models (Levy *et al.*, 2013; Hsu *et al.*, 2013). It is clear that generally the CNTL simulation does a reasonable job of simulating the spatial distribution of AOD₅₅₀ (Fig. 11a) when compared to MODIS (Fig. 11d).

The new nitrate scheme will impact the total AOD₅₅₀ by various direct and indirect routes. Firstly, the addition of NO₃, NH₄ and hetNO₃ mass will increase the size and change the composition of the ambient aerosols thus altering their optical properties. Secondly, hetNO₃ mass associated with sea-salt will replace existing NaCl thus changing the aerosol composition. Thirdly, the explicit addition of NH₄ to the hygroscopic growth routine will reduce hygroscopic growth, whereas NO₃ and hetNO₃ will promote hygroscopic growth. Finally, tropospheric SO₄ was previously assumed to uniformly take the form of (NH₄)₂SO₄ in terms of optical properties, but in the new nitrate scheme is explicitly divided into H₂SO₄ and (NH₄)₂SO₄ contributions based on NH₄ abundance. Indirectly, NH₄ and NO₃ may alter the AOD₅₅₀ by impacting online aerosol emissions (such as dust and sea-salt) and atmospheric oxidant concentrations in the UM.

The AOD₅₅₀ differences between the CNTL and nitrate simulations (FAST and SLOW) shown in Fig. 11 are a combination of the various direct and indirect changes to the UM listed above which do not necessarily result in an increase to AOD₅₅₀. The global-mean AOD₅₅₀ difference between FAST and CNTL of +0.0048 is serendipitously close to equivalent nitrate AODs in

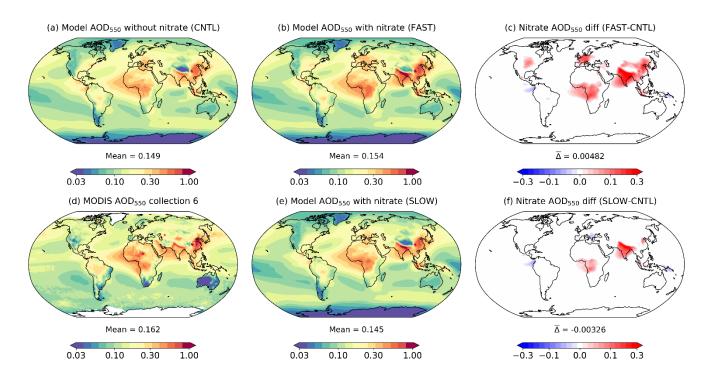


Figure 11: Annual-mean and column-integrated 550nm aerosol optical depth (AOD $_{550}$) in the CNTL, FAST, and SLOW simulations and from MODIS collection 6 satellite observations. (c) and (f) show the difference between the FAST and CNTL, and SLOW and CNTL, simulations respectively

the literature such as +0.006 in Paulot *et al.* (2016), +0.005 in HA14, and +0.006 [+0.002, +0.009] in Myhre *et al.* (2013), although it is important to note that the AOD₅₅₀ changes in those studies were derived from difference between present-day (PD) and pre-industrial (PI) simulations, rather than PD with and without nitrate. This is a subtle but important difference which reduces comparability given that the PI simulations included nitrate, albeit at much smaller concentrations than in PD (Hauglustaine *et al.*, 2014). Despite the negligible global AOD₅₅₀ difference between FAST and CNTL, there are significant regional perturbations such as +0.05 over Northern Europe as a whole, +0.08 over East Asia, +0.19 over South Asia, and +0.04 over West Africa and Southern Equatorial Africa (Fig. 11c). The changes in the SLOW simulation are more subtle, for instance, AOD₅₅₀ changes by -0.007 over Northern Europe, +0.013 over East Asia, +0.1 over South Asia, and +0.018 over West Africa and Southern Equatorial Africa (Fig. 11f).

Figure 12 shows the annual-mean all-sky radiative flux perturbation at the Top-Of-the-Atmosphere (TOA). As the UM simulations are atmosphere-only with fixed sea-surface temperatures and sea-ice fields, the TOA radiative flux perturbation can also be denoted the total Effective Radiative Forcing (ERF) (Bellouin *et al.*, 2020). The global-mean ERFs from FAST-CNTL and SLOW-CNTL are -0.19 Wm⁻² and -0.07 Wm⁻² respectively, which is a similar magnitude to the PD-PI nitrate RFs

665

660

655

680

685

690

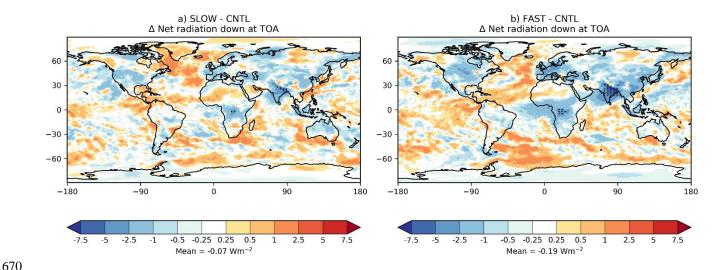


Figure 12: Annual-mean Top-Of-the-Atmosphere (TOA) net downwelling radiative flux (shortwave + longwave) perturbation or effective total radiative forcing in the a) SLOW and b) FAST simulations with respect to CNTL. Stippling indicates where differences are significant at the $\pm 2\sigma$ level

of -0.056 Wm⁻² in HA14, -0.17 Wm⁻² in Bellouin *et al.* (2011), and -0.08 [-0.02, -0.12] Wm⁻² in Myhre *et al.* (2013), although note again that the RFs in those studies were derived from difference between present-day (PD) and pre-industrial (PI) simulations, rather than PD with and without nitrate, and those studies determined the direct radiative forcing rather than the total ERF which also includes indirect radiative impacts of cloud and atmospheric composition changes. An explicit assessment of nitrate-induced changes to cloud properties is outside the scope of this study. Although most regions exhibit insignificant radiative differences between FAST and CNTL in Fig. 12b (where stippling indicates significant changes at the $\pm 2\sigma$ level), there are significant changes over Europe (min = -3.7 Wm⁻², mean = -1.5 Wm⁻²), South Asia (min = -10.3 Wm⁻², mean = -3.2 Wm⁻²), and Southern Equatorial Africa (min = -3.8 Wm⁻², mean = -1.2 Wm⁻²). This mirrors nitrate's radiative signal in HA14. The SLOW simulation exhibits smaller radiative impacts than FAST, with significant changes limited to South Asia (min = -7.7 Wm⁻², mean = -1.5 Wm⁻²) and Southern Equatorial Africa (min = -3.5 Wm⁻², mean = -0.7 Wm⁻²). Figure 12 highlights the regionality of ammonium nitrate climate forcing and further demonstrates the significant differences between the FAST and SLOW simulations.

4 Conclusions and Discussion

A thermodynamic equilibrium nitrate scheme has been added to UKCA-mode and tested in the Met Office's Unified Model. In contrast to widely utilised 'instantaneous' thermodynamic equilibrium models, the UKCA nitrate scheme limits the rate at which ammonium nitrate (NH₄·NO₃) concentrations reach equilibrium using first-order condensation theory. Sensitivity tests

are performed to assess the sensitivity of NH₄·NO₃ concentrations to the nitric acid (HNO₃) uptake coefficient (γ in Eq. 7). Specifically, two values of γ are chosen to represent fast uptake rates ($\gamma = 0.193$; FAST) and slow uptake rates ($\gamma = 0.001$; SLOW) based on the range of γ measurements from the literature (e.g. Bauer *et al.*, 2004). While it is known that γ varies with aerosol composition, temperature, and relativity humidity (e.g. Vlasenko *et al.*, 2006), well-constrained values for HNO₃ uptake on common aerosol species (e.g. sulphate, organic carbon, black carbon) are at present lacking. As a first order sensitivity test, the HNO₃ uptake coefficient used in NH₄·NO₃ production is assumed to be globally invariant to aerosol composition (with the exception of mineral dust), temperature and relative humidity in FAST and SLOW. A third nitrate simulation in which NH₄·NO₃ reaches thermodynamic equilibrium instantaneously (INSTANT), is shown to produce near-identical results to FAST.

700

705

710

715

695

To help evaluate the sensitivity of NH₄NO₃ concentrations to HNO₃ uptake coefficient, and the suitability of the FAST and SLOW uptake coefficients, a range of surface and satellite observations and comparable modelling studies have been compared to the UM simulations. Many robust results emerge from the simulations. Fine NO₃ concentrations are a factor of 2 greater in FAST than in SLOW on a global-mean basis, with associated increases to NH₄ concentrations in FAST. The largest differences are over land regions in North America, Europe, South and East Asia, and Equatorial Africa. However, there are minimal differences between coarse NO₃ (associated with dust and sea-salt) concentrations in FAST and SLOW. Over many populous land regions (Europe, North America, East and South East Asia, and West and Equatorial Africa), seasonal near-surface NH₄NO₃ concentrations are closely correlated with seasonal NH₃ emissions suggesting that NH₃ availability is the limiting factor controlling NH₄·NO₃ prevalence (Giannakis et al., 2019). In the SLOW simulation, coarse NO₃ concentrations are of a similar magnitude to fine NO₃ concentrations over many industrialised regions. Comparing the simulated concentrations to CASTNet observations (i.e. the US network), FAST better captures the spatial distribution of near-surface NO₃, NH₄, and HNO₃ concentrations but is positively biased, whereas SLOW better captures the magnitude of the concentrations. Total NO₃ concentrations over Europe are comparable between SLOW and EMEP observations but are a factor of 3-4 too high in FAST. Many of the biases in simulated NH₄ and NO₃ concentrations appear to be artefacts of biases in precursor gas (HNO₃ and NH₃) concentrations. Significant AOD and TOA radiative flux impacts are mostly isolated to land regions with substantial NH₄·NO₃ burdens. On a global mean basis, the nitrate ERF is -0.17 Wm⁻² in FAST and -0.07 Wm⁻² in SLOW which mirrors the ratio of NH₄·NO₃ burdens in the two simulations.

Introducing a kinetic limitation on the rate at which NH₄·NO₃ concentrations reach equilibrium has minimal effect for $\gamma = 0.193$ (i.e. comparing FAST with INSTANT) but a significant effect equivalent to a halving for $\gamma = 0.001$ (i.e. comparing SLOW with FAST). In general, FAST exhibits better spatial correlation with observed nitrate concentrations while SLOW better resolves the magnitude of concentrations. Note though that there are many caveats associated with this study. Using a globally uniform value for the HNO₃ uptake coefficient (γ) obviates the dependence of γ on aerosol composition and relative humidity. A better parameterisation may instead utilise a volume-weighted γ depending on aerosol composition and ambient

750

755

relative humidity. Additionally, assuming the same value of γ for both HNO₃ and NH₃ is a pragmatic simplification owing to 725 the dearth of γ measurements. For example, Benduhn et al. (2016) assume uptake coefficients of 0.2 and 0.1 for HNO₃ and NH_3 respectively. On another note, if γ is used to tune the NH_4 : NO_3 concentrations to observations in future then existing biases in precursor gases (HNO₃ and NH₃), in terms of emissions and atmospheric processes, should first be evaluated and addressed. For instance, the curious surplus of simulated NH₃ at night at UK sites (Figure S10 in the Supplement) may be 730 rectified by imposing a diurnal cycle on NH₃ emissions based on number of daylight hours, as implemented by Park et al. (2004). Bian et al. (2017) also highlight the importance of accurately simulating NH₃ dissolution in cloud droplets, which may be oversimplified in the UM owing to the ubiquitous assumption of a cloud droplet pH of 5 in UKCA. This study has also highlighted a potential overestimate of NH₃ emissions in Europe in the CMIP6 emissions inventory, as also posited by Druge et al. (2019). An accurate NH₃ and NO_x emissions inventory is vital for a proficient simulation of NH₄ and NO₃ concentrations. 735 HNO₃ concentrations also appear to be overestimated over the western US (Fig. 5) in these simulations, which may emanate from an oversimplification of heterogeneous N₂O₅ chemistry in UKCA Strattrop 1.0, given that the uptake coefficient in that reaction is uniformly set to 0.1 (Archibald et al., 2020).

The differences between the simulated and observed concentrations in this study (Figs 5-7) may be attributed to the use of perpetual year-2000 conditions in these simulations; the coarse model resolution utilised here (N96); biases in HNO₃ and NH₃ emissions; deficiencies in the thermodynamic equilibrium approach; and due to the choice of a monotonic uptake coefficient. In particular, this study has shown that the HNO₃ uptake coefficient is an important parameter in the production of ammonium nitrate and assuming a monotonic value in climate models may be too simplified an approach given the high sensitivity of HNO₃ uptake to ambient aerosol composition. Future simulations would benefit from stronger observational constraints on the HNO₃ and NH₃ uptake rates as a function of aerosol composition, relative humidity, and temperature, perhaps from targeted laboratory studies.

In a follow-on study, we aim to evaluate the nitrate scheme in high-resolution UM simulations for specific meteorological case-studies in a manner analogous to Gordon *et al.* (2018) but over a UK-based domain. Additionally, we will replace the constant HNO₃ uptake coefficient in the new nitrate scheme with a volume-weighted value based on aerosol composition and relative humidity, and re-run the simulations using transient CMIP6-like atmosphere-only UM integrations. The next issue to address will be coupling NO₃ and NH₄ aerosol within the UKESM framework. At present, fixed nitrogen (NO_y + NH_x) deposition to the land-surface model (JULES) in UKESM is applied using offline deposition fields from the input4MIPs database (see Sellar *et al.* (2020) for further details). Meanwhile, the ocean biogeochemistry module in UKESM (MEDUSA2; Yool *et al.* (2003)) has a closed nitrogen budget thus obviating interactions with atmospheric nitrogen. With the addition of ammonium and nitrate aerosol to a future version of UKESM, we will aim to fully couple atmospheric fixed-nitrogen deposition with the land and ocean surfaces to permit a comprehensive closed-budget nitrogen cycle.

In conclusion, the addition of ammonium and nitrate aerosol to UKCA-mode in the UM is step-change in aerosol-modelling capability in the UK and will increase confidence in future simulations of aerosol forcing and regional air pollution episodes. Additionally, nitrate concentrations have been shown to be highly sensitive to the nitric acid uptake rate, paving a way for climate models to reduce outstanding biases in ammonium nitrate concentrations.

Code Availability

Due to intellectual property rights restrictions, we cannot provide either the source code or documentation papers for the UM.

The Met Office Unified Model is available for use under licence. A number of research organisations and national meteorological services use the UM in collaboration with the Met Office to undertake basic atmospheric process research, produce forecasts, develop the UM code, and build and evaluate Earth system models. For further information on how to apply for a licence, see http://www.metoffice.gov.uk/research/modelling-systems/unified-model (last access: 16 April 2021). The nitrate scheme is now available on the 'trunk' (the Met Office's data repository) and is available for all future UM versions since vn11.8 in UKCA mode setup 10.

Data Availability

The UM data used to produce the figures is available from the Centre of Environmental Data Analysis (CEDA) (http://dx.doi.org/10.5285/0613b74ecc574fa7b6ac8a22838c5f81; last accessed 12/05/2021) and if used should be cited accordingly: Jones, A.C.; Hill, A.; Remy, S.; Abraham, N.L.; Dalvi, M.; Hardacre, C.; Hewitt, A.J.; Johnson, B.; Mulcahy, J.P.; Turnock, S. (2021): Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office's Unified Model: nitrate and nitric acid simulation data. NERC EDS Centre for Environmental Data Analysis, *date of citation*. https://catalogue.ceda.ac.uk/uuid/0613b74ecc574fa7b6ac8a22838c5f81

Competing Interests

The authors declare that they have no conflict of interest.

780 Author contributions

ACJ developed the nitrate scheme with assistance from AH, SR, NLA, MD, and AJH. ACJ performed the simulations with assistance from NLA and MD. ACJ, AH, CH, BJ, JM, and SR analysed the simulations and compared the results to observations. ACJ wrote the manuscript with assistance from all co-authors.

Acknowledgements

The authors would like to thank the Met Office and the UM team for providing the UM climate model; NASA for making the MODIS satellite data freely available; and EMEP, the United States Environment Protection Agency (EPA), and GASSP for making their concentration measurement data freely available. The authors thank the many scientists who have contributed data utilised in this evaluation. The authors would also like to thank Didier Hauglustaine, John Hemmings, Nicolas Bellouin, Alexander Archibald, Paul Griffiths, Steve Rumbold, Michael Cotterell, and Paul Agnew for their comments and assistance throughout this project. Figures were produced using Python 3.6.10 (https://www.python.org/) and Iris 2.4.0 (https://scitools.org.uk/).

ACJ and AH are supported by the Clean Air programme which is jointly delivered by the Natural Environment Research Council (NERC) and the Met Office, with the Economic and Social Research Council (ESRC), Engineering and Physical Sciences Research Council (EPSRC), Innovate UK, Medical Research Council (MRC), National Physical Laboratory (NPL), Science and Technology Facilities Research Council (STFC), Department for Environment, Food and Rural Affairs (Defra), Department for Health and Social Care (DHSC), Department for Transport (DfT), Scottish Government and Welsh Government. AJH is supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). BJ is funded by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra (GA01101). NLA is supported by NERC and NCAS through the ACSIS project.

800 References

805

Aas, W., Tsyro, S., Bieber, E., Bergström, R., Ceburnis, D., Ellermann, T., Fagerli, H., Frölich, M., Gehrig, R., Makkonen, U., Nemitz, E., Otjes, R., Perez, N., Perrino, C., Prévôt, A. S. H., Putaud, J.-P., Simpson, D., Spindler, G., Vana, M., and Yttri, K. E.: Lessons learnt from the first EMEP intensive measurement periods, Atmos. Chem. Phys., 12, 8073–8094, doi:10.5194/acp12-8073-2012, 2012.

Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res.-Atmos., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000.

Ackermann, I. J., Hass, H., Memmesheimer, M., Ziegenbein, C., and Ebel, A.: The parameterization of the sulfate-nitrate ammonia aerosol system in the long-range transport model EURAD, Meteorol. Atmos. Phys., 57, 101–114, 1995.

Ansari, A. S., and S. N. Pandis: Response of inorganic PM to precursor concentrations, Environ. Sci. Technol., 32, 2706–2714, 1998.

830

835

845

Archibald, A. T., O'Connor, F. M., Abraham, N. L., Archer-Nicholls, S., Chipperfield, M. P., Dalvi, M., Folberth, G. A., Dennison, F., Dhomse, S. S., Griffiths, P. T., Hardacre, C., Hewitt, A. J., Hill, R. S., Johnson, C. E., Keeble, J., Köhler, M. O., Morgenstern, O., Mulcahy, J. P., Ordóñez, C., Pope, R. J., Rumbold, S. T., Russo, M. R., Savage, N. H., Sellar, A., Stringer, M., Turnock, S. T., Wild, O., and Zeng, G.: Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1, Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, 2020.

Atkinson, R.: Atmospheric Chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.

Ballard, S.S., Browder, J.S., and Ebersole, J.F.: Refractive index of special crystals and certain glasses, in American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York, 1972.

Bauer, S. E., Balkanski, Y., Schulz, M., Hauglustaine, D. A., and Dentener, F.: Global modeling of heterogeneous chemistry on mineral aerosol surfaces: influence on tropospheric ozone chemistry and comparison to observations, J. Geophys. Res., 109, D02304, doi:10.1029/2003JD003868, 2004.

Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., and Streets, D. G.: Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone, Atmos. Chem. Phys., 7, 5043–5059, doi:10.5194/acp-7-5043-2007, 2007.

Bauer, S. E., Tsigaridis, K., and Miller, R.: Significant atmospheric aerosol pollution caused by world food cultivation, Geophys. Res. Lett., 43, 5394–5400, doi:10.1002/2016GL068354., 2016.

Bellouin, N., Boucher, O., Haywood, J., Johnson, C., Jones, A., Rae, J., and Woodward, S.: Improved representation of aerosols for HadGEM2, Hadley Centre technical note 73, Hadley Centre, Met Office, Exeter, UK, available at: http://www.metoffice.gov.uk/media/pdf/8/f/HCTN 73.pdf, 42 pp., 2007.

Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate, J. Geophys. Res.-Atmos., 116, D20206, https://doi.org/10.1029/2011jd016074, 2011.

Bellouin, N., Mann, G. W., Woodhouse, M. T., Johnson, C., Carslaw, K. S., and Dalvi, M.: Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model, Atmos. Chem. Phys., 13, 3027–3044, https://doi.org/10.5194/acp-13-3027-2013, 2013.

850

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., WatsonParris, D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding global aerosol radiative forcing of climate change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2020.

855

Benduhn, F., Mann, G. W., Pringle, K. J., Topping, D. O., McFiggans, G., and Carslaw, K. S.: Size-resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS-1.0 – Description, evaluation and first global modelling results, Geosci. Model Dev., 9, 3875–3906, doi:10.5194/gmd-9-3875-2016, 2016.

860

Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T., Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D., Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G.: Investigation of global particulate nitrate from the AeroCom phase III experiment, Atmos. Chem. Phys., 17, 12911–12940, https://doi.org/10.5194/acp-17-12911-2017, 2017.

865

Boutle, I. A., Abel, S. J., Hill, P. G., and Morcrette, C. J.: Spatial variability of liquid cloud and rain: observations and microphysical effects, Q. J. Roy. Meteorol. Soc., 140, 583–594, https://doi.org/10.1002/qj.2140, 2014

Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van Der Hoek, K. W., and Olivier, J. G. J.: A Global High-O Resolution Emission Inventory for Ammonia, Global Biogeochem. Cy., 11, 561–587, https://doi.org/10.1029/97GB02266, 1997.

870

Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R., Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D., Yu, H., Buchard, V., Randles, C. A., Silva, A. M. da, Darmenov, A., Colarco, P. R., Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D., and Yu, H.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies, J. Clim., 30, 6851–6872, https://doi.org/10.1175/JCLI-D-16-0613.1, 2017.

875

Carn, S. A., Fioletov, V. E., McLinden, C. A., Li, C., and Krotkov, N. A.: A decade of global volcanic SO2 emissions measured from space, Sci. Rep., 7, 44095, https://doi.org/10.1038/srep44095, 2017.

890

905

Cleaver, B., Rhodes, E., and Ubbelohde, A. R.: Studies of phase transformations in nitrates and nitrites I. Changes in ultraviolet absorption spectra on melting, Proc. R. Soc. London, 276, 437-453, https://doi.org/10.1098/rspa.1963.0217, 1963.

Cotterell, M. I., Willoughby, R. E., Bzdek, B. R., Orr-Ewing, A. J., and Reid, J. P.: A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles, Atmos. Chem. Phys., 17, 9837–9851, https://doi.org/10.5194/acp-17-9837-2017, 2017.

Crutzen, P. J.: The influence of nitrogen oxides on the atmospheric ozone content, Q. J. Roy. Meteorol. Soc., 96, 320–325, doi:10.1002/qj.49709640815, 1970.

Department for Environment, Food and Rural Affairs (DEFRA): Report: Fine Particulate Matter (PM2.5) in the United Kingdom, Available here: https://uk-air.defra.gov.uk/library/reports?report_id=727, pp. 203, Published: 14/12/2012, DEFRA, London, UK, 2012.

895 Drugé, T., Nabat, P., Mallet, M., and Somot, S.: Model simulation of ammonium and nitrate aerosols distribution in the Euro-Mediterranean region and their radiative and climatic effects over 1979–2016, Atmos. Chem. Phys., 19, 3707–3731, https://doi.org/10.5194/acp-19-3707-2019, 2019.

Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van Donkelaar, A., and Zhang, L.: Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys., 10, 3999–4012, doi:10.5194/acp-10-3999-2010, 2010.

Feng, Y. and Penner, J. E.: Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry, J. Geophys. Res.-Atmos., 112, D01304, https://doi.org/10.1029/2005jd006404, 2007.

Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., Klimont, Z., van Marle, M., van den Berg, M., and van der Werf, G. R.: The generation of gridded emissions data for CMIP6, Geosci. Model Dev., 13, 461–482, https://doi.org/10.5194/gmd-13-461-2020, 2020

910 Finkelstein, P., Ellestad, T., Clarke, J., Meyers, T., Schwede, D., Hebert, E., and Neal, J.: Ozone and sulfur dioxide dry deposition to forests: Observations and model evaluation, J. Geophys. Res.-Atmos, 105, 15, 365–377, https://doi.org/10.1029/2000JD900185, 2000.

920

930

Fortems-Cheiney, A., Dufour, G., Hamaoui-Laguel, L., Foret, G., Siour, G., Van Damme, M., Meleux, F., Coheur, P.-F., Clerbaux, C., Clarisse, L., Favez, O., Wallasch, M., and Beekmann, M.: Unaccounted variability in NH3 agricultural sources detected by IASI contributing to European spring haze episode, Geophys. Res. Lett., 43, 5475–5482, https://doi.org/10.1002/2016GL069361, 2016.

Fuchs, N. A. and Sutugin, A. G.: Highly Dispersed Aerosols, Butterworth-Heinemann, Newton, Mass., USA, 105, 1970.

Gerber, H. E.: Relative-humidity parameterization of the Navy Aerosol Model (NAM), NRL Report 8956, Naval Research Laboratory, Washington, DC, 1985.

Giannakis, E., Kushta, J., Bruggeman, A., and Lelieveld, J.: Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations, Environ. Sci. Eur., 31:93, https://doi.org/10.1186/s12302-019-0275-0, 2019.

Giannakopoulos, C., Chipperfield, T., Law, K., and Pyle, J.: Validation and intercomparison of wet and dry deposition schemes using Pb-210 in a global three-dimensional off-line chemical transport model, J. Geophys. Res., 104, 23761–23784, 1999.

Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734, 2006.

Gordon, H., Field, P. R., Abel, S. J., Dalvi, M., Grosvenor, D. P., Hill, A. A., Johnson, B. T., Miltenberger, A. K., Yoshioka, M., and Carslaw, K. S.: Large simulated radiative effects of smoke in the south-east Atlantic, Atmos. Chem. Phys., 18, 15261–15289, https://doi.org/10.5194/acp-18-15261-2018, 2018.

Gosse, S. F., Wang, M., Labrie, D., and Chylek, P.: Imaginary part of the refractive index of sulfates and nitrates in the 0.7–2.6 µm spectral region, Appl. Opt., 36, 16, 3622–3634, 1997.

Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Denier van der Gon, H., Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T., Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period, Clim. Change, 109, 163–190, https://doi.org/10.1007/s10584-011-0154-1, 2011.

975

Hardacre, C., Mulcahy, J. P., Pope, R., Jones, C. G., Rumbold, S. R., Li, C., and Turnock, S. T.: Evaluation of SO2, SO4(2-) and an updated SO2 dry deposition parameterization in UKESM1, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-238

950 Hauglustaine, D. A., Balkanski, Y., and Schulz, M.: A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate, Atmos. Chem. Phys., 14, 11031–11063, https://doi.org/10.5194/acp-14-11031-2014, 2014.

Hemmings, J., and Savage, N.: An Initial Evaluation of the GLOMAP-mode Aerosol Scheme for UK Air-Quality Forecasting with AQUM, Met Office Weather Science Technical Report No. 632, August 2018, pp. 70, Available here:

https://www.metoffice.gov.uk/research/library-and-archive/publications/science/weather-science-technical-reports, Met Office, Exeter, UK, 2018.

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J.,
Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P.
R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.

Hsu, N. C., Jeong, M.-J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., Huang, J., and Tsay S.-C.: Enhanced Deep Blue aerosol retrieval algorithm: The second generation, J. Geophys. Res.-Atmos., 118, 9296–9315, https://doi.org/10.1002/jgrd.50712, 2013.

Ivlev, L. S. and Popova, S. I.: Optical constants of substances of atmospheric aerosol, Sov. Phys. J., 15, 703–707, https://doi.org/10.1007/BF00893039, 1972.

Jacobson, M.: Numerical techniques to solve condensational and dissolutional growth equations when growth is coupled to reversible aqueous reactions, Aerosol Sci. Technol., 27, 491–498, doi:10.1080/02786829708965489,1997.

Jacobson, M. Z.: Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption, J. Geophys. Res., 104, 3527–3542, https://doi.org/10.1029/1998JD100054, 1999.

Jarzembski, M. A., Norman, M. L., Fuller, K. A., Srivastava, V., and Cutten, D. R.: Complex refractive index of ammonium nitrate in the 2–20 µm spectral range, Appl. Optics, 42, 922–930, https://doi.org/10.1364/AO.42.000922, 2003.

1000

- Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe,
 H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel,
 J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, Science, 326, 5959, 1525–1529, doi:10.1126/science.1180353, 2009.
- Khairoutdinov, M. F. and Kogan, Y. L.: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus, Mon. Wea. Rev., 128, 229–243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2, 2000.
 - Kucera, V., and Fitz, S.: Direct and indirect air pollution effects on materials including cultural monuments, Water Air Soil Pollut., 85, pp. 153-165, https://doi.org/10.1007/BF00483697, 1995.
- 995 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371, doi:10.1038/nature15371, 2015.
 - Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
 - Li, W. J. and Shao, L. Y.: Observation of nitrate coatings on atmospheric mineral dust particles, Atmos. Chem. Phys., 9, 1863–1871, doi:10.5194/acp-9-1863-2009, 2009.
- Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M. B., Puchalski, M. A., Gay, D. A., and Collett,
 J. L.: Increasing importance of deposition of reduced nitrogen in the United States, P. Natl. Acad. Sci. USA, 113, 5874–5879,
 doi:10.1073/pnas.1525736113, 2016.
 - Liao, H., Adams, P. J., Chung, S. H., Seinfeld, J. H., Mickley, L. J., and Jacob, D. J.: Interactions between tropospheric chemistry and aerosols in a unified general circulation model, J. Geophys. Res., 108, 4001, doi:10.1029/2001JD001260, 2003.

1025

1030

Lovett, G. M., Tear, T. H., Evers, D. C., Findlay, S. E. G., Cosby, B. J., Dunscomb, J. K., Driscoll, C. T., and Weathers, K. C.: Effects of air pollution on ecosystems and biological diversity in the eastern United States, Ann. N. Y. Acad. Sci., 1162, 99-135, doi:10.1111/j.1749-6632.2009.04153.x, 2009.

- Makar, P. A., Wiebe, H. A., Staebler, R. M., Li, S.-M., and Anlauf, K.: Measurement and modelling of particle nitrate formation, J. Geophys. Res.-Atmos., 103, D11, 13 095–13 110, https://doi.org/10.1029/98JD00978, 1998.
- Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Mankte low, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519–551, https://doi.org/10.5194/gmd-3-519-2010, 2010.
 - Manners, J., Edwards, J. M., Hill, P., and Thelen, J.-C.: SOCRATES (Suite Of Community RAdiative Transfer codes based on Edwards and Slingo) Technical Guide, Met Office, UK, available at: https://code.metoffice.gov.uk/trac/socrates (last access: 25 October 2017), 2015.
 - McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zheng, B., Crippa, M., Brauer, M., and Martin, R. V.: A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS), Earth Syst. Sci. Data, 12, 3413–3442, https://doi.org/10.5194/essd-12-3413-2020, 2020.
 - Metzger, S., Dentener, F., Pandis, S., and Lelieveld, J.: Gas/aerosol partitioning: 1. A computationally efficient model, J. Geophys. Res., 107, D164312, https://doi.org/10.1029/2001JD001102, 2002.
- Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., Amann, M., Baklanov, A., Baltensperger, U.,
 Bey, I., Blake, N., Blake, R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E., Frost, G. J., Generoso, S., Ginoux, P., Grewe, V., Guenther, A., Hansson, H. C., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I. S. A., Jenkin, M. E., Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj, P., Lawrence, M. G., Lee, J. D., Liousse, C., Maione, M., McFiggans, G., Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J. J., O'Dowd, C. D., Palmer, P. I., Parrish, D. D., Petzold, A., Platt, U., Poeschl, U., Prevot, A. S. H., Reeves, C. E., Reimann, S., Rudich, Y., Sellegri, K.,
- Steinbrecher, R., Simpson, D., ten Brink, H., Theloke, J., van der Werf, G. R., Vautard, R., Vestreng, V., Vlachokostas, C., and von Glasow, R.: Atmospheric composition change global and regional air quality, Atmos. Environ., 43, 5268–5350, doi:10.1016/j.atmosenv.2009.08.021, 2009.

1050

1075

Mozurkewich, M.: The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size, Atmos. Environ. A-Gen., 27, 261–270, 1993.

Mulcahy, J. P., Jones, C., Sellar, A., Johnson, B., Boutle, I. A., Jones, A., Andrews, T., Rumbold, S. T., Mollard, J., Bellouin, N., Johnson, C. E., Williams, K. D., Grosvenor, D. P., and McCoy, D. T.: Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1, J. Adv. Model. Earth Syst., 10, 2786–2805, https://doi.org/10.1029/2018MS001464, 2018.

Mulcahy, J. P., Johnson, C., Jones, C. G., Povey, A. C., Scott, C. E., Sellar, A., Turnock, S. T., Woodhouse, M. T., Abraham, N. L., Andrews, M. B., Bellouin, N., Browse, J., Carslaw, K. S., Dalvi, M., Folberth, G. A., Glover, M., Grosvenor, D. P., Hardacre, C., Hill, R., Johnson, B., Jones, A., Kipling, Z., Mann, G., Mollard, J., O'Connor, F. M., Palmiéri, J., Reddington,
C., Rumbold, S. T., Richardson, M., Schutgens, N. A. J., Stier, P., Stringer, M., Tang, Y., Walton, J., Woodward, S., and Yool, A.: Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, 2020.

Myhre, G., Grini, A., and Metzger, S.: Modelling of nitrate and ammonium-containing aerosols in presence of sea salt, Atmos. Chem. Phys., 6, 4809–4821, http://www.atmos-chem-phys.net/6/4809/2006/, 2006.

Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp13-1853-2013, 2013.

Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152, https://doi.org/10.1023/A:1009604003981, 1998.

O'Connor, F. M., Johnson, C. E., Morgenstern, O., Abraham, N. L., Braesicke, P., Dalvi, M., Folberth, G. A., Sanderson, M. G., Telford, P. J., Voulgarakis, A., Young, P. J., Zeng, G., Collins, W. J., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere, Geosci. Model Dev., 7, 41–91, https://doi.org/10.5194/gmd-7-41-2014, 2014.

Palik, E. D.; Khanna, R. Sodium Nitrate (NaNO3). In Handbook of Optical Constants; Palik, E. D., Ed.; Academic Press: New York, 1998; Vol. 3, p 871, 1998.

1085

1090

Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary pollution influences on sulfate-1080 nitrate-ammonium aerosols in the United States: Implications for policy, J. Geophys. Res., 109, D15204, doi:10.1029/2003JD004473, 2004.

Paulot, F., Ginoux, P., Cooke, W. F., Donner, L. J., Fan, S., Lin, M.-Y., Mao, J., Naik, V., and Horowitz, L. W.: Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth, Atmos. Chem. Phys., 16, 1459–1477, https://doi.org/10.5194/acp16-1459-2016, 2016.

Putaud, J. P., Raes, F., Van Dingenen, R., Bruggemann, E., Fac- "chini, M. C., Decesari, S., Fuzzi, S., Gehrig, R., Huglin, C., Laj, "P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Muller, K., "Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., Tørseth, K., and Wiedensohler, A.: A European aerosol phenomenology 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2579–2595, 2004

Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., Flynn, C. J., Randles, C. A., Silva, A. M. da, Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., and Flynn, C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation, J. Clim., 30, 6823–6850, https://doi.org/10.1175/JCLI-D16-0609.1, 2017.

Reddington, C. L., Carslaw, K. S., Stier, P., Schutgens, N., Coe, H., Liu, D., Allan, J., Browse, J., Pringle, K. J., Lee, L. A., Yoshioka, M., Johnson, J. S., Regayre, L. A., Spracklen, D. V., Mann, G. W., Clarke, A., Hermann, M., Henning, S., Wex, H.,
Kristensen, T. B., Leaitch, W. R., Pöschl, U., Rose, D., Andreae, M. O., Schmale, J., Kondo, Y., Oshima, N., Schwarz, J. P., Nenes, A., Anderson, B., Roberts, G. C., Snider, J. R., Leck, C., Quinn, P. K., Chi, X., Ding, A., Jimenez, J. L., and Zhang, Q.: The global aerosol synthesis and science project (GASSP): Measurements and modeling to reduce uncertainty, B. Am. Meteorol. Soc., 98, 1857–1877, https://doi.org/10.1175/BAMS-D-15-00317.1, 2017.

Rémy, S., Kipling, Z., Flemming, J., Boucher, O., Nabat, P., Michou, M., Bozzo, A., Ades, M., Huijnen, V., Benedetti, A., Engelen, R., Peuch, V.-H., and Morcrette, J.-J.: Description and evaluation of the tropospheric aerosol scheme in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS-AER, cycle 45R1), Geosci. Model Dev., 12, 4627–4659, https://doi.org/10.5194/gmd-12-4627-2019, 2019.

- Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie, R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, 2011.
- Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., O'Connor, F. M., and Dalvi, M.: Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation, Geosci. Model Dev., 6, 353–372, doi:10.5194/gmd-6-353-2013, 2013.
 - Schwartz, S. E.: Mass transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds, in: Chemistry of Multiphase Atmospheric Systems, edited by: Jaeschke, W., 415–471, Springer, New York, 1986.
 - Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John, Wiley & Sons, Inc., 1998.
- Sellar, A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J.,
 Woodward, S., de Mora, L., Kuhlbrodt, T., Rumbold, S., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abraham, N. L.,
 Andrews, M. B., Andrews, T., Archibald, A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M., Edwards, J.,
 Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D.,
 Keeble, J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson, E., Siahaan, A., Smith, R. S., Swaminathan,
 R., Woodhouse, M., Zeng, G., and Zerroukat, M.: UKESM1: Description and evaluation of the UK Earth System Model, J.
 Adv. Model. Earth Syst., https://doi.org/10.1029/2019MS001739, 2019.
- Sellar, A., Walton, J., Jones, C. G., Wood, R., Abraham, N. L., Andrejczuk, M., Andrews, M. B., Andrews, T., Archibald, A. T., Dyson, H., Elkington, M., Ellis, R., Florek, P., Good, P., Gohar, L., Haddad, S., Hardiman, S. C., Hogan, E., Iwi, A., Jones, C. D., Johnson, B., Kelley, D. I., Kettleborough, J., Knight, J. R., Köhler, M. 5 O., Kuhlbrodt, T., Liddicoat, S., Linova-Pavlova, I., Mizielinski, M. S., Morgenstern, O., Mulcahy, J., Neininger, E., O'Connor, F. M., Petrie, R., Ridley, J., Rioual, J.-C., Roberts, M., Robertson, E., Rumbold, S., Seddon, J., Shepherd, H., Shim, S., Stephens, A., Teixeira, J. C., Tang, Y., Williams, J., and Wiltshire, A.: Implementation of UK Earth system models for CMIP6, J. Adv. Model. Earth Syst., 12, e2019MS001946. https://doi.org/10.1029/2019MS001946, 2020.
- Smith, C., Hill, A. K., and Torrente-Murciano, L.: Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape, Energy Environ. Sci., doi: 10.1039/c9ee02873k, 13, 331, 2020.

1150

1155

1160

1165

1175

Telford, P. J., Abraham, N. L., Archibald, A. T., Braesicke, P., Dalvi, M., Morgenstern, O., O'Connor, F. M., Richards, N. A. D., and Pyle, J. A.: Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3), Geosci. Model Dev., 6, 161–177, https://doi.org/10.5194/gmd-6-161-2013, 2013.

Torseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke, A. G., Myhre, C. L., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972-2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.

Turnock, S. T., Allen, R. J., Andrews, M., Bauer, S. E., Deushi, M., Emmons, L., Good, P., Horowitz, L., John, J. G., Michou, M., Nabat, P., Naik, V., Neubauer, D., O'Connor, F. M., Olivié, D., Oshima, N., Schulz, M., Sellar, A., Shim, S., Takemura, T., Tilmes, S., Tsigaridis, K., Wu, T., and Zhang, J.: Historical and future changes in air pollutants from CMIP6 models, Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, 2020.

Twigg, M. M., Ilyinskaya, E., Beccaceci, S., Green, D. C., Jones, M. R., Langford, B., Leeson, S. R., Lingard, J. J. N., Pereira, G. M., Carter, H., Poskitt, J., Richter, A., Ritchie, S., Simmons, I., Smith, R. I., Tang, Y. S., Van Dijk, N., Vincent, K., Nemitz, E., Vieno, M., and Braban, C. F.: Impacts of the 2014–2015 Holuhraun eruption on the UK atmosphere, Atmos. Chem. Phys., 16, 11415–11431, https://doi.org/10.5194/acp-16-11415-2016, 2016.

van Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., and van der Werf, G. R.: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015), Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, 2017.

Vlasenko, A., Sjogren, S., Weingartner, E., Stemmler, K., Gaggeler, H. W., and Ammann, M.: Effect of humidity on nitric acid uptake to mineral dust aerosol particles, Atmos. Chem. Phys., 6, 2147–2160, doi:10.5194/acp-6-2147-2006, 2006.

Vinken, G. C. M., Boersma, K. F., Maasakkers, J. D., Adon, M., and Martin, R. V.: Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations, Atmos. Chem. Phys., 14, 10363–10381, doi:10.5194/acp-14-10363-2014, 2014.

Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.:

1185

1205

The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019.

Weast, R.C.: CRC Handbook of Chemistry and Physics, 1971-1972: A Ready Reference Book of Chemical and Physical Data, 52nd ed., 1971.

West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin, N., Partridge, D. G., and Kipling, Z.: The importance of vertical velocity variability for estimates of the in direct aerosol effects, Atmos. Chem. Phys., 14, 6369–6393, https://doi.org/10.5194/acp-14-6369-2014, 2014.

Wexler, A. S. and Seinfeld, J. H.: The distribution of ammonium salts among a size and composition dispersed aerosol, Atmos. Environ., 24A, 1231–1246, 1990.

Wilson, D. R. and Ballard, S. P.: A microphysically based precipitation scheme for the UK Meteorological Office Unified Model, Q. J. Roy. Meteorol. Soc., 125, 1607–1636, https://doi.org/10.1002/qj.49712555707, 1999.

Wilson, D. R., Bushell, A. C., Kerr-Munslow, A. M., Price, J. D., and Morcrette, C. J.: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description, Q. J. Roy. Meteorol. Soc., 134, 2093–2107, https://doi.org/10.1002/qj.333, 2008

Womack, C. C., McDuffie, E. E., Edwards, P. M., Bares, R., Gouw, J. A. A., Docherty, K. S., Dubé, W. P., Fibiger, D. L., Franchin, A., Gilman, J. B., Goldberger, L., Lee, B. H., Lin, J. C., Long, R., Middlebrook, A. M., Millet, D. B., Moravek, A., Murphy, J. G., Quinn, P. K., Riedel, T. P., Roberts, J. M., Thornton, J. A., Valin, L. C., Veres, P. R., Whitehill, A. R., Wild, R. J., Warneke, C., Yuan, B., Baasandorj, M., and Brown, S. S.: An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NOx and VOC Control as Mitigation Strategies, Geophys. Res. Lett., 46, 4971–4979, https://doi.org/10.1029/2019GL082028, 2019.

Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations, Q. J. R. Meteorol. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014.

Woodward, S.: Modelling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model, J. Geophys. Res., 106, 18 155–18 166, 2001.

1225

1235

World Health Organisation (WHO): World health statistics 2020: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO, 2020.

Xu, L. and Penner, J. E.: Global simulations of nitrate and ammonium aerosols and their radiative effects, Atmos. Chem. Phys., 12, 9479–9504, https://doi.org/10.5194/acp-12-9479- 2012, 2012.

1215 Xu, R., Tian, H., Pan, S., Prior, S. A., Feng, Y., Batchelor, W. D., Chen, J., and Yang, J.: Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty, Glob. Change Biol., 25, 314–326, https://doi.org/10.1111/gcb.14499, 2019.

Yienger, J. J., and Levy, H.: Empirical model of global soil-biogenic NO_x emissions, J. Geophys. Res., 100(D6), 11447, 1220 https://doi.org/10.1029/95JD00370, 1995.

Yool, A., Popova, E. E., and Anderson, T. R.: MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies, Geosci. Model Dev., 6, 1767–1811, doi:10.5194/gmd-6-1767-2013, 2013.

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res., 113, D13204, doi:10.1029/2007JD008782., 2007.

Zerroukat, M. and Allen, T.: On the monotonic and conservative transport on overset/Yin-Yang grids, J. Comput. Phys., 302, 285–299, https://doi.org/10.1016/j.jcp.2015.09.006, 2015.

Zhong, Q., Shen, H., Yun, X., Chen, Y., Ren, Y., Xu, H., Shen, G., Du, W., Meng, J., Li, W., Ma, J., and Tao, S.: Global Sulfur Dioxide Emissions and the Driving Forces, Environ. Sci. Technol., 54, 6508–6517, https://dx.doi.org/10.1021/acs.est.9b07696, 2020.

Zhu, L., Henze, D. K., Bash, J. O., Cady-Pereira, K. E., Shephard, M. W., Luo, M., and Capps, S. L.: Sources and Impacts of Atmospheric NH₃: Current Understanding and Frontiers for Modeling, Measurements, and Remote Sensing in North America, Curr. Pollution Rep., 1, 95–116, DOI 10.1007/s40726-015-0010-4, 2015